

JavaExe
version 3.2

by DevWizard
(DevWizard@free.fr)

(12 October 2013)

mailto:DevWizard@free.fr

to Jawaher...

5

Table of Contents

Presentation .. 7
History.. 9

License ... 13
License of use .. 13

Redistribution license... 13
Modifications allowed and not allowed ... 13

General Use .. 15
Creation of .EXE .. 15

Properties ... 16
Use of UpdateRsrcJavaExe .. 18
To change the icon of .EXE ... 20

Splash Screen ... 20
Creating shortcuts .. 20

Running as Windows application .. 21
Instances Number... 21

Session Restore .. 21

Running as Windows Service .. 23

Interactive Service ... 25

Running as Control Panel .. 27

Running as ScreenSaver .. 29

Additional Functionalities

System Events Management ... 33

Taskbar Management .. 37
Windows Registry Management ... 41
Dynamic Splash Screen .. 45
Admin/User Section Management .. 47
Service Control Management ... 51

System Management ... 55

Appendices

Java Interfaces... 59
ApplicationManagement .. 59

ControlPanelManagement .. 59

RegistryManagement ... 60

ScreenSaverManagement ... 60
SectionManagement ... 61
ServiceControlManagement ... 61
ServiceManagement ... 63
SplashScreenManagement ... 64
SystemEventManagement .. 64
SystemManagement ... 65
TaskbarManagement .. 66

6

Examples ... 69
1 - Application.. 69
2 - Control Panel .. 69
3 - Service .. 69

4 - TrayIcon .. 69

5 - Service & TrayIcon ... 70

6 - System Event .. 70
7 - OneInstance .. 70
8 - Service & TrayIcon & System Event ... 70
9 - Registry ... 70
10 - Test Unicode ... 71

11 - Restore Session ... 71
12 - Run as Admin 1 .. 71
13 - Run as Admin 2 .. 71
14 - Thread as Admin 1 .. 71
15 - Thread as Admin 2 .. 71

16 - Dynamic SplashScreen 1 .. 72
17 - Dynamic SplashScreen 2 .. 72

18 - Dynamic SplashScreen 3 .. 72
19 - ScreenSaver .. 72
20 - SystemManagement .. 72
21 – ServiceControlManagement ... 73

22 - ServiceControlManagement & Admin ... 73
23 - Service & TrayIcon & System Event & SCM & Admin .. 73

7

Presentation

JavaExe makes it possible to launch your Java application from an .exe file like a Windows application, or a

service system, or as a Control Panel, or as a ScreenSaver.

It is possible to provide a JRE with the Java application so that it operates regardless of the configuration of

the client system.

Among the features of JavaExe, addition to the different types of launch, we can note :

 limitation the number of instance running,

 the restoration of the Java application automatically after a system reboot,

 the interception of Windows systems events (such as inserting or ejecting an external device, a reboot

request of system and allow it or not, change of state of the user session, connection or disconnection

of a network, change of state of the battery, ...),

 managenent of the taskbar (this allows to have a interactive service),

 management of the Windows registry,

 opportunity to restart the Java application (or part of it) in Administrator mode,

 access to certain system functions to restart Windows, or to put it in standby, ...

 ability to control Windows services,

 dynamic splash screen

In this documentation, the icon represents a new feature or a change from the previous version of JavaExe.

« Imagination is more important than Knowledge »

Albert Einstein

9

History

 3.2 (12 October 2013) :

o Support for 64-bit JRE.

o Screensaver : ability to run the Java application as a screensaver (with JavaExe.scr file)

o Ability to fully restart the Java application in Admin mode, controlled in code or through the manifest

of the executable.

o Ability to run only a part of the Java application in Admin mode.

o Management of Services Control: ability to manage Windows services, delete, stop, retrieve status

information, change their configuration, ...

o Shutdown Management of the PC, or the standby, locking the session, ...

o Possibility to prevent running of the screensaver, turns off the monitor, and the automatic standby of

the PC.

o Dynamic splash screen: can update in real time the static splash screen.

o Static splash screen: additional image formats such as GIF, JPG and PNG.

o Taskbar:

 Addition of MFS_ADMIN attribute for menu entries to have the elevation icon request for

Admin mode.

 The taskInit method now has an argument to know it is in ServiceUI mode or not.

o Automatic detection of the property "RunType" according to the features used.

o Service :

 Adding a control argument, -startServiceUI, to launch manually the UI part of the interactive

service.

 Automatic detection of configuration changes since the creation of the service.

 Fixed a major bug for interactive services: if the taskGetInfo method was not declared, the UI

part of the service does not launch.

o System Events :

 SC_MONITORPOWER: new event for the monitor turns off.

 PBT_APMPOWERSTATUSCHANGE: was not intercepted on Windows Vista and higher.

 SC_SCREENSAVE: was not intercepted from a service.

o Adding arguments JavaExe.exe (and its derivatives) :

 -createShortcut : creating shortcuts to the executable file, depending on the features used

 -deleteShortcut : delete shortcuts created with -createShortcut

o UpdateRsrcJavaExe :

 Integrating files for JavaExe.scr

 Integration of a manifest in the executable for the Admin mode

 Adding arguments : -admin ; -scr ; -img (replace -bmp)

 If moving files to integrate is on JavaExe.exe (or derivatives), then UpdateRsrcJavaExe will

automatically start to integrate these files.

 Fixed a minor bug on the arguments received between " or '

 Fixed a minor bug on Drag'n'Drop files on UpdateRsrcJavaExe (on some versions of

Windows and under certain conditions of starting).

o Fixed a major bug with the feature IsOneInstance when the first instance of the application was

launched in administrator mode but not the other instances.

o Fixed a minor bug when uninstalling an interactive service: the icon on the taskbar remained active

sometimes (on some versions of Windows).

o Fixed a minor bug when JavaExe was not found a JRE: the browser does not open for downloading

and install a JRE (concerned only some versions of Windows).

 3.1 (6 June 2012) :

o Unicode : Full management of Unicode in JavaExe (except for the class name)

o Windows Registry : integration of native functions are accessible from Java applications

10

o Possibility to automatically restart the Java application after a reboot.

o Taskbar : Adding the mouse click event on the balloon

o Windows Services :

 Adding of failure actions (RESTART, REBOOT), and Delayed Automatic starting.

 Changing the launch of the interactive part of the service.

o Control Panel : Fixed a major bug in the installation of the control panel from a Windows Vista and

higher

o Fixed a minor bug when the JRE is included with the application and that it runs on a Windows

empty. The JVM could not find the MSVCR71.dll file.

o Fixed a minor bug on the total size of arguments passed to the executable file of the Java application

(JavaExe.exe renamed).

o For launch as a service or control panel, the current path is fixed to the Java application, where is the

executable (instead of “C:\WINDOWS\system32\” by default).

 3.0.2 (14 February 2007) :

o Correction of minor bug with JRE 1.4 : When the Java application exits with a System.exit(0) an error

file was generated by the JVM. This error occurs only with JRE 1.4.

o Correction of major bug with JRE 1.6 : When the JRE 1.6 was provided with the Java application,

JavaExe could not find the main class.

 3.0.1 (30 October 2006) :

o Correction of a minor bug in UpdateRsrcJavaExe : the files associated with the checkbox were

always taken even if the corresponding checkbox were not selected.

o Correction of a major bug concerning the example "7 - OneInstance": the result of the method

isOneInstance was not always taken in certain version of Windows XP, and the example “8 - Service

& TrayIcon & System Event” : the interactive part can’t run in some cases.

o The minimum number of version required of Java is indicated in the message of alert if no JRE is

found.

 3.0 (11 September 2006) :

o Management of Java application as a Control Panel (with JavaExe.cpl file)

o Management of the Taskbar (Icon Tray).

o Management of System Events.

o Displaying a SplashScreen while starting the application.
o Possibility of controlling the number of instances running of same application.

o Rename the tool MergeICO into UpdateRsrcJavaExe.

o Properties :

 Add URL_InstallJRE, PathJRE, PathBrowser, Display_BoxInstall

 RunAsService : rename to RunType

 RunType : new type adding (2) for the Control Panel mode.

 ClassDirectory : setting to default to “resource”

o Reading “manifest” of main .jar to looking for the main class.

 2.0 (16 November 2003)

o Launching the Java application directly with the JVM if possible. If not, launching it via java.exe

o Possibility of launching the application like a Windows service.

o Creation of second executable file named JavaExe_console.exe for launching the application with a

console DOS.

o Addition of some properties: ClassDirectory, PersonalOptions, ResourceDirectory, RunAsService

o The JREversion property means now the minimum version instead of the strict version.

 1.3 (21 April 2003) :

o Correction of a potential bug in JavaExe.exe (a pb with “\” in the variable properties

PersonalClasspath)

 1.2 (4 November 2002) :

11

o Correction of a bug in MergeICO.exe (the moving of an icon file to MergeICO.exe didn’t work)

o Launching of the Java application with the parameter java.library.path fixed at “;.\resource \ “, you

are thus allowing to put your possible DLL (for the native methods for example) in the same directory

as your application or in the directory ”resource”.

 1.1 (5 October 2002) :

o Addition of a property, Main Class, in the JavaExe.properties file. This property is necessary when

the main class is in a package.

 1.0 (28 August 2002): birth of JavaExe.

13

License

The term JavaExe includes the executable files JavaExe.exe, JavaExe_console.exe, JavaExe.cpl,

JavaExe.scr (and their derivative, that is to say, their renamed version by the name of the main class or .jar) and the

file UpdateRsrcJavaExe.exe.

License of use

JavaExe is freeware and as such you are allowed to use personal way, or in a professional or educational

background (university, school, ...).

Redistribution license

You are also allowed to redistribute JavaExe with your Java application, be it commercial or freeware.

Modifications allowed and not allowed

The only modifications allowed are those specified in this documentation, or adding resources such as

RT_MANIFEST, RT_VERSION, ...

It is also authorized to add a digital signature to executable files of JavaExe or its derivatives (except

UpdateRsrcJavaExe.exe) using utilities provided for this purpose.

However, you are not allowed to modify the binary code (that is to say, the executable part) of files JavaExe.

15

General Use

Creation of .EXE

Above all, it is important to note that there are two versions of a JavaExe executable: a 32-bit version (or

x86) and another 64-bit (or x64). The 32-bit version is planned for Windows 32-bit and also works on a 64-bit

system, but with a 32-bit JRE in both cases. The other version, the 64-bit, works only on 64-bit systems and only

with 64-bit JRE.

To obtain an .exe file of your Java application, it is quite simply enough to copy JavaExe.exe in your

directory containing the Java application, then to give him the same name as your principal .class or .jar.

JavaExe.exe is provided with a console version, JavaExe_console.exe, to allow have a console DOS to print on

standard output. All that will be said on JavaExe.exe apply to JavaExe_console.exe.

Example :

If my main class names MyApp.class, I copy and rename JavaExe.exe to MyApp.exe

If my principal class is contained in a .jar, this one will have to be also called MyApp.jar.

The .class or .jar must be in the same directory as the .exe or in a directory named by default “resource” to

create on the same level as the .exe file. However this directory can be defined specifically by modifying the property

“ResourceDirectory” (see the paragraph named The Properties).

Example :

 If MyApp.exe is in the directory ”D:\Dev\”, then MyApp.class or MyApp.jar is in :

 either in ”D:\Dev\”

 either in the directory ”D:\Dev\resource\”

JavaExe remains however dependent on a JDK or a JRE, it is necessary that at least a Java Runtime

Environment (JRE) is installed. If JavaExe does not detect a JDK or JRE, it will open a browser on the site of Sun to

download the current JRE.

You can provide a JRE with your application (the completely uncompacted JRE and not the installation file).

In this case, you must put it in a directory named « jre », itself in the directory of the .EXE or in the directory

“resource”.

Example :

 Let be the following configuration of MyApp.exe :

 the .exe is in the ”D:\Dev\”
 a JRE is provide with the application and is in the directory “D:\Dev\resource\jre”

Then MyApp.exe will always launch with this JRE there some is that installed on the machine
customer, even if it of installed of it there none.

16

Properties

Once the .exe file created, it is possible to associate properties it to define the way in which the Java

application will be launched or to specify certain parameters necessary to its executing.

These properties are to be put in a text file bearing the same name as the .exe file, but with the extension

“properties”. A property will be defined by a followed name of its value, form: “name = value”.

However this file could be integrated into the .exe by using the UpdateRsrcJavaExe utility.

Example :

 If MyApp.exe is in the directory ”D:\Dev \”, then MyApp.properties can be in this same
directory or in “D:\Dev\resource \”.
In this example, MyApp.properties contains:

 JRE version = 1.2
 Personal Classpath = .\resource\classes12.zip
 MainArgs = "test" 123

MyApp will be then launched with Java 1.2 (or more), and orders it command line is :
 java -classpath .;.\resource\MyApp.jar;.\resource\classes12.zip MyApp "test" 123

Here the list of these properties :

 JRE version (or JREversion) = to specify a minimal version of java : 1.4 ; 1.3 ; ...

If a JRE is provided with the application, this property will be ignored.

example :

 JREversion = 1.3 JavaExe must be able to find at least version 1.3 of Java to launch the

application

 Run Type (or RunType) = to specify how the application must be launched :

 0 = as a simple application (default value)

 1 = as a service

 2 = as a Control Panel

 3 = as a SreenSaver

example :

 RunType = 1 JavaExe will launch the application as Service

However the RunType can be determined automatically depending on the features of JavaExe used in

the Java application:

o if serviceGetInfo() or serviceInit() is declared, then RunType = 1

o if the JavaExe.cpl file is used, then RunType = 2

o if the JavaExe.scr file is used and scrsvPaint() is declared, then RunType = 3

 Run As Service (or RunAsService) = this property should not be used any more. To replace by

“RunType = 0” or “RunType = 1”

 Main Class (or MainClass) = to indicate the complete name of your main class, if JavaExe could not

find it according to only the name of .exe or Manifest in the jar. The only case where it is necessary to

specify this property will be when the name of the .exe and the .jar does not reflect the name of the

17

main class and no Manifest is found.

example :

 MainClass = com.toto.myClass

 Main Args (or MainArgs) = these values will have passed in arguments to the method main of your

principal class, in the variable (String[] args).

example :

 MainArgs = 123 aze the argument args[] of the method main will contain: [0] = “123” and

[1] = “aze”.

 Personal Options (or PersonalOptions) = allows to specify the options of launching specific to the

JVM.

example :

 PersonalOptions = -Xms64m -Xverify:none

 Personal Classpath (or PersonalClasspath) = if your application to need for .jar, .zip or .class

additional or being in other directories. Several files or directories can be specified by separating

them from a semicolon.

example :

 PersonalClasspath = D:\Dev\lib\lib.jar ; C:\Application\resource\

 Resource Directory (or ResourceDirectory) = to indicate the directory resource containing the .JAR,

the .DLL, the images, files of properties.... If this parameter misses, the directory named “resource”

located at the same level that the .EXE will be used by default.

example :

 ResourceDirectory = .\bin\ specify this directory where the main .jar must be sought by

default.

 Class Directory (or ClassDirectory) = to indicate the directories (separated by `;') to scanner

recursively in order to find all there .jar and .zip to be put in ClassPath. This property will contain at

least the directory “resource” thus allowing the taking into account of all the .jar contained in this

directory without having to specify them one by one in the classpath.

example :

 ClassDirectory = .\lib\ ; D:\Dev\lib\ add to ClassPath all the .jar and .zip found in these 2

respective directories and their sub-directories, like in the directory “resource”.

 Path JRE (or PathJRE) = pathname of the JRE if it is provided with the application. By default it will

be required in the directory “jre” on the same level as the .exe or in the directory “resource”.

 Path Browser (or PathBrowser) = pathname of the browser to be used for the installation possible of

a JRE (by default it is the pathname of InternetExplorer).

 Display BoxInstall (or Display_BoxInstall) = to indicate if a message must be displayed when

JavaExe does not find a JRE or JDK, and asking whether one wishes to install a JRE or to leave the

application. Only two values are accepted : 0 or 1.

 1 = display dialog box to install or not the JRE (default value)

 0 = do not display any message, and starting the procedure of installation by opening a browser on

the URL adequate.

 URL InstallJRE (or URL_InstallJRE) = allows to indicate a URL on which JavaExe will open a

browser if no JRE or JDK is found with the launching of the application. If this property is not

18

indicated, it is the URL on java.sun.com which will be taken.

There can be other properties if your application uses this same file for its own needs.

Use of UpdateRsrcJavaExe

JavaExe is provided with another program, UpdateRsrcJavaExe (called MergeICO in the previous

versions), making it possible to change the icon of your MyApp.exe, to define a splash screen, or to integrate the file

of the properties in the .exe, in the .cpl (for the use of the Java application as Control Panel), or in the .scr (for

ScreenSaver).

The integration of these files can be done in four ways :

 While clicking on the button of the type of file which one wishes to open.

 By moving the files wanted on this window of UpdateRsrcJavaExe.

 By command line.

 By moving the desired files on JavaExe.exe (or the renamed version MyApp.exe), provided that

UpdateRsrcJavaExe is present and the same folder that JavaExe.exe (or MyApp.exe).

Types of recognized files :

19

 .BMP ; .GIF ; .JPG ; .PNG : allows to define a splash screen in the Java application.

 .ICO : allows to change the icon of the .exe file, or .scr file.

 .PROPERTIES : allows to integrate the properties used by JavaExe.

 .EXE : allows to specify the .exe derived from JavaExe.exe (renamed or not) which will

receive the files to be integrated.

 .CPL : allows to specify the .cpl derived from JavaExe.cpl (renamed or not) which will

receive the files to be integrated (only the file of properties can be integrated into a .cpl).

 .SCR : allows to specify the .scr derived from JavaExe.scr (renamed or not) which will

receive the files to be integrated (only the files of icon and properties can be integrated into a .scr).

After loading a file to be integrated, it is possible to see the characteristics of them while clicking on its button

 .

When at least a source file and a destination file are loaded in UpdateRsrcJavaExe, it will be then possible to

click on the button to execute the integration of the files whose box will be checked.

If UpdateRsrcJavaExe is used in command line, here the list of the recognized arguments :

 -run : allows to launch integration without the window require to open if all the

parameters necessary are specified.

 -exe=file : to indicate the name of a .exe file which will receive the files to be integrated.

This .exe file must be a derived of JavaExe.exe.

 -cpl=file : to indicate the name of a .cpl file which will receive the files to be integrated.

This file must be a derived of JavaExe.cpl.

 -scr=file : to indicate the name of a .scr file which will receive the files to be integrated.

This file must be a derived of JavaExe.scr.

 -ico=file : allows to indicate the name of an icon which will be integrated into the .exe or

.scr

 -img=file : allows to indicate the name of an image, in format BMP, GIF, JPG or PNG,

which will be integrated into the .exe and being used as splash screen.

 -bmp=file : same feature as -img, but should not be used.

 -prp=file : to specify the name of a properties file which will be integrated.

 -admin=true (or 1) : includes a manifest to run the executable in Admin mode.

 -admin=false (or 0) : includes a manifest to run the executable in standard mode.

 -admin : like as « -admin=true ».

20

To change the icon of .EXE

It is possible to modify the icon of the .exe file to launch your Java application. All formats of icons are now

accepted by JavaExe.

To do this simply use UpdateRsrcJavaExe, provided with JavaExe, either by command line with arguments

-ico=icon file and -exe=executable file, either by moving the icon and executable files on the window of

UpdateRsrcJavaExe (see the previous paragraph for use).

Splash Screen

To define a splash screen in your Java application it is enough to have the image in format BMP, GIF, JPG or

PNG and to use the UpdateRsrcJavaExe program, either by command line with arguments -img=image file and

-exe=executable file, either by moving the image and executable files on the window of UpdateRsrcJavaExe (see

the paragraph of this utility).

 This defined splash screen will be static, that is to say that the same screen will be displayed for a while.

However, while this screen is displayed, it is possible to change it at regular time intervals to give it a dynamic

appearance or to automatically associate a progress bar (see Section “Dynamic Splash Screen” page 45).

Creating shortcuts

It is possible to automatically create shortcuts on JavaExe executable files depending on the features used by

the Java application.

To do this, simply call in command line the JavaExe derivative (that is to say, its renamed version in

MyApp.exe) and to pass the following arguments :

 -createShortcut : to create the necessary shortcuts according using :

o Service :

*-install.lnk et *-delete.lnk : to install and remove the service.

*-start.lnk : to start the service, if STOP is allowed or if it is not automatic.

*-stop.lnk : to stop the service if the STOP is authorized.

*-runUI.lnk : to launch the UI part of the service, if it is interactive.

o Control Panel :

*-install.lnk et *-delete.lnk : to install it or remove it.

o ScreenSaver :

*-install.lnk et *-delete.lnk : to install and remove the screen saver.

*-config.lnk : to open the setup screen, if exists.

 -deleteShortcut : to delete shortcuts created with the command -createShortcut.

21

Running as Windows application

To launch your Java program as a Windows application, you do not have anything special to make if it is not

what already was note in the chapter “General Use” : Just rename JavaExe.exe giving the same name as your main

.class or .jar.

Instances Number

It is possible to control the number of instance of the Java application, while authorizing or not only one

execution at time. For that your main class must contain a named static method “isOneInstance” and must have the

following signature :

public static boolean isOneInstance (String[] args);

The arguments sent to this method are those which will be sent to the main method. If isOneInstance returns

TRUE then only one instance of the application will be launched.

At the time of the launching of the application, if it is the first instance that executing, this method will not be

called but the main method with its possible arguments.

On the other hand, if it is not the first execution, the method isOneInstance of the first instance of the

application will be initially called with the arguments which the main method would have received.

If isOneInstance returns TRUE the process stops there and the lauching instance will be cancelled. If

isOneInstance returns FALSE the process of launching continues, a new instance of the application will be executed

and its main method will be called with the possible arguments.

Session Restore

During a system reboot if the Java application was running, it can tell to JavaExe whether to store the current

context of the application to return it by restarting the application automatically with the system.

The kept context correspond to the arguments passed to the application and the session data supplied by the

application. To manage this session restore, just set the following static methods in the main class :

public static boolean sessionIsRestore();

The declaration of this method is optional. It used to tell JavaExe restarting or not the

application after rebooting the system.

If it returns TRUE, the application will be restarted even if no context isn’t given by methods

sessionGetMainArgs() and sessionGetData().

However if the method returns FALSE, the application will not be restarted regardless of the

statement or values of the two methods mentioned above.

Finally, if the method is not declared, the application will be restarted if at least one of the two

previous methods returns a value.

22

public static String[] sessionGetMainArgs();

This method is optional and provided to JavaExe additional arguments to be passed to the

main method when the application is restarted. These arguments are added to those existing

when the application was launched with arguments.

public static Serializable sessionGetData();

This method, if it is declared, provides to JavaExe some data that will be returned to the Java

application after being relaunched with the system. This maintains a state of the application

while Windows restarts.

public static void sessionSetData (Serializable data);

This method is called automatically by JavaExe after the application has been restarted and

before calling the main method, with the context data provided by the method

sessionGetData().

23

Running as Windows Service

So that your Java application is launched as a service system, it is enough to create the .exe (see the chapter

“General Use”) and to specify in the file properties, the property “RunType = 1”.

A restriction should however be noted : the service will not be able to launch in console mode with

JavaExe_console.

With the launching of the application several cases of figure can exists :

1. the main class is provided to function like a normal application, i.e. the point of entry is main().

2. the Java application contains the definite methods for JavaExe being used as interface between the

management of the Windows service and the application (see lower, like in Appendix the

JavaExe_I_ServiceManagement interface).

And for each one of these cases, the application-service can be launched directly with the JVM or via the

command java.exe. That thus makes us 4 cases of launching be studied.

1. main() + JVM => the point of entry being main(), this one will be called only to launch the service,

and this last could be stopped only by restarting the system.

2. main() + java.exe => same thing that previously.

3. interface + JVM => the defined methods to be used as interface will be called individually according to

needs'. The method main() will never be called.

4. interface + java.exe => since launching is executing with the command java.exe, the point of entry will be

then main() and we fall down in the configuration of the case n° 2.

In the case n° 3, if for an unspecified reason one cannot call the JVM directly, one will have to pass by

java.exe (case n°4) and thus the method main() will be the only point of entry. Also, it is important not to forget to

call the method serviceInit() since main(). For more details to see the example provided with this documentation.

It is possible to directly launch operations on the service, like its installation, its suppression, its start or its

stop, without passing by the possible dialog box of confirmation.

For that it is enough to launch JavaExe.exe (i.e. MyApp.exe) with like argument :

 -installService : to force its installation

 -deleteService : to force its suppression

 -startService : to force its start

 -stopService : to force its stop

 -startServiceUI : to run its UI part if the service is interactive

Methods used as interface : JavaExe_I_ServiceManagement

These methods are directly called by JavaExe :

1. public static boolean serviceIsCreate ();

2. public static boolean serviceIsLaunch ();

3. public static boolean serviceIsDelete ();

4. public static boolean serviceInit ();

5. public static void serviceFinish ();

24

6. public static String[] serviceGetInfo ();

7. public static boolean serviceControl_Pause ();

8. public static boolean serviceControl_Continue ();

9. public static boolean serviceControl_Stop ();

10. public static boolean serviceControl_Shutdown ();

11. public static void serviceDataFromUI (Serializable data);

12. public static boolean serviceIsDataForUI ();

13. public static Serializable serviceDataForUI ();

These methods are to be declared either in the main class, or in a class with the same name but post fixed by

“_ServiceManagement”. For example, if my main class is called MyApp, then these methods can be indifferently in

MyApp.class or MyApp_ServiceManagement.class.

It is not necessary to declare all them.

1. serviceIsCreate : This method is called at launching of JavaExe.exe (i.e. MyApp.exe) if the service is not

installed yet. The service will be installed only if this method returns TRUE. If this method is not declared, a

dialog box will open to require of the user if it or not wishes to install the service. The method

serviceGetInfo will be also called to obtain certain characteristics necessary to the creation of the service.

2. serviceIsLaunch : This method is called after the installation of the service. This one will be immediately

launched if the method returns TRUE. A dialog box will open, if this method is not declared, to require of the

user if it or not wishes to launch the service.

3. serviceIsDelete : This method will be called with launching of JavaExe.exe (i.e. MyApp.exe) if the service is

already installed. The service will be removed only if this method returns TRUE. If this method is not

declared, a dialog box will open to ask whether the user or not wishes to remove the service. However if the

service were created by specifying that its stop was not authorized (see the method serviceGetInfo), the

service will be actually removed only with the restarting of the system.

4. serviceInit : This method is called when the service is launched, whether it is manually or automatically. The

method must return TRUE if and only if the application is active and in executing. If it returns FALSE or if it

does not answer before a 30 seconds deadline, Windows will consider that the service failed the attempt at

starting and will launch the program of failure then if it were defined (see the method serviceGetInfo). If the

method is not declared, the service will be launched immediately without condition.

5. serviceFinish : This method will be called when the service is stopped either manually, or automatically with

the stop of the system.

6. serviceGetInfo : This method is called at the time of creation of the service in order to obtain certain

additional information, such as :

 Complete name of the service in opposition to the short name which is the name of the .exe file.

 Service Description.

 “1” or “TRUE” to indicate that the service will be launched automatically with the system.

 “1” or “TRUE” to indicate that the service can be stopped manually.

 Name of the file to be executing when the service failed. Files .BAT can not be executing correctly

on Windows 2000.

 Arguments required to the program which is executing at the time of a failure.

 List names of services (short name), separated by a tabulation (`\t') or slash (‘/’), on which this

service depends. i.e. Windows will make sure that these services are launched before launching

this one.

25

 List of actions for service failure. The possible values are: NONE, RESTART, REBOOT or RUN

corresponding to "Do Nothing", "Restart Service", "Reboot System" or "Run Program". This list

can contain multiple values separated by a slash ('/'). For example: RESTART / RESTART /

REBOOT, the system will restart the service for the 1st and 2nd failures and restart Windows for

the 3rd failure. The number of values is not limited but Windows will only display the first 3.

However all values in the list will be taken into account by the system.

 List of delay (in seconds, and separated by a slash '/') corresponding to the actions to be triggered

on failure. This list must contains same number of values that the action list. "10 / 20 / 30" for

example corresponds to an expectation of 10 seconds before triggering the first action, then a wait

of 20 seconds before the second, ...

 Delay (in seconds) before resetting the failure actions counter. The value -1 indicates that there

will be no reset. For example, a value of 3600 means that after one hour the failure counter is reset

and at the next failure, the 1st action in the list will be triggered.

 Message to be displayed on computers connected to it when the action "REBOOT" is triggered in

case of service failure.

 "1" or "TRUE" to indicate that the service will be launched in delayed mode. This attribute is only

applicable if the service is set to be launched automatically with the system. The delayed mode is

used to tell Windows to launch the service after all automatic services (not delayed). This feature is

only available in Windows Vista and higher.

This method returns a table of String whose elements correspond respectively to those enumerated

previously. If this method is not defined, all this information will be empty, launching will be automatic and

the stop will not be authorized. This method can be called several times by JavaExe.

This method will be called every 30 seconds during the execution of the service to automatically

detect any configuration changes compared with the value returned by the same method when creating the

service. If a change is detected, the new configuration will be applied without the service is stopped.

7. serviceControl_Pause : This method is called when Windows tries to put in pause the service. This one will

be indeed pauses about it if the method returns TRUE before a 30 seconds deadline. If the method is not

declared, the service will be put in pause immediately.

8. serviceControl_Continue : This method is called when Windows tries to start again the service put in pause.

This one will be indeed active if the method returns TRUE before a 30 seconds deadline. If the method is not

declared, the service will be started again immediately.

9. serviceControl_Stop : This method is called when Windows tries to stop the service. This one will be

stopped if the method returns TRUE before a 30 seconds deadline. After the stop of the service, the method

serviceFinish will be finally called. If the method is not declared, the service will be stopped immediately.

10. serviceControl_Shutdown : This method is called when Windows is stopped or started again. It has the same

behavior as serviceControl_Stop.

Interactive Service

A Windows service cannot be directly interactive with the Desktop from at least one Windows Vista for

security reasons (it was still possible to Windows XP).

The solution is to separate the actual services part of its interactive part (windows, dialog box, user

interaction, ...). The first part will always run as a service, while the second will be launched as a Windows

application in the context of the current user. This will involve two different processes that must communicate

between.

26

JavaExe automatically manages these two parts and their communication to exchange data or actions to

perform. For example, since the service cannot display itself an error message, it signal to the interactive part that it

must display the error message. And, the interactive part can send requests for actions to be performed by the service

according to user choice.

The 3 following methods are used for the services which interact with the Desktop. So that a service is

recognized like interactive, it is enough that your Java application integrates the management of the taskbar (see the

chapter “Management of the taskbar”). The service cannot communicate directly with the Desktop, it will have to

pass by methods envisaged for this purpose :

11. serviceDataFromUI (Serializable data) : This method will be called by the interactive part of the service

with in argument an object being treated by the service.

12. serviceIsDataForUI : This method will have to return TRUE if an object is available for the interactive part.

13. serviceDataForUI : This method returns an object for the interactive part.

With these three methods their counterpart in TaskbarManagement corresponds. See the chapter

“Management of the taskbar” for the detail of these methods, as well as the JavaExe_I_TaskbarManagement

interface in Appendix.

 It is important to understand that there should not be direct bond between the classes of the service itself and

the classes of its interactive part with the Desktop. If that were however to arrive, they will be two instances different

from the same class and thus with different data.

 Here a diagram summarizing the structure of an interactive service :

Of course, from the point of view of the Java developer all this is transparent. It will have simply to take care

that its classes of the interactive part does not refer to the classes of the core part, and vice versa.

JavaExe_I_ServiceManagement

Core class
of service

JavaExe_I_TaskbarManagement

JavaExe

Class of

interactive
part of
service

27

Running as Control Panel

So that your Java application is recognized like a Control panel, it is enough to create the .exe (see the chapter

“General Use”) and to specify in the file properties, the property “RunType = 2”.

JavaExe is also provided with another type of file, JavaExe.cpl, which will have to be renamed as for the

.exe. It is this file which will be recognized like a control panel by Windows.

It is possible to directly launch its installation, or its suppression, without passing by the possible dialog box

of confirmation.

For that it is enough to launch JavaExe.exe (i.e. MyApp.exe) with like argument :

 -installCPL : to force its installation

 -deleteCPL : to force its suppression

Methods used as interface : JavaExe_I_ControlPanelManagement

These methods are directly called by JavaExe :

public static boolean cplIsCreate ();

public static boolean cplIsDelete ();

public static String[] cplGetInfo ();

public static void cplOpen ();

These methods are to be declared either in the main class, or in a class with the same name but post fixed by

“_ ControlPanelManagement”. For example, if my main class is called MyApp, then these methods can be

indifferently in MyApp.class or MyApp_ControlPanelManagement.class.

It is not necessary to declare all them.

1. cplIsCreate : This method is called with launching of JavaExe.exe (i.e. MyApp.exe) if the control panel is

not installed yet. It will be installed only if this method returns TRUE. If this method is not declared, a dialog

box will open to require of the user if it or not wishes to install the control panel. The method cplGetInfo will

be also called to obtain certain characteristics necessary to the creation of the control panel.

2. cplIsDelete : This method will be called with launching of JavaExe.exe (i.e. MyApp.exe) if the control panel

is already installed. It will be removed only if this method returns TRUE. If this method is not declared, a

dialog box will open to ask whether the user or not wishes to remove the control panel.

3. cplGetInfo : This method is called at the time of creation of the control panel in order to obtain certain

additional information, such as :

 Name.

 Description.

 Its categories of membership (starting from version XP of Windows). If you want to make appear

your control panel in several categories, you will have to separate each value by a comma (`,'). See

in Appendix the interface “JavaExe_I_ControlPanelManagement” for the list as of the these

categories.

28

This method returns a table of String whose elements correspond respectively to those quoted previously. If

this method is not defined, all this information will be empty and the name will be that of the .exe file.

4. cplOpen : This method will be called with the opening of the control panel. If this method is not declared, it

is the main method which will be called.

29

Running as ScreenSaver

For that your Java application is recognized like a screensaver, just create the .exe (See the chapter "General

Use") and specify in the file .properties, the property "RunType = 3".

JavaExe also comes with another file type, the JavaExe.scr, which will be renamed like for the .exe. This is

the file that will be recognized as a screensaver for Windows.

You can start the installation directly, or its removal, bypassing any confirmation dialog boxes. To do this

simply run JavaExe.exe (that is to say MyApp.exe) with the argument :

 -installSCR : to force its installation

 -deleteSCR : to force its suppression

 -configSCR : to force open the setup screen, if existing

Methods used as interface : JavaExe_I_ScreenSaverManagement

These methods are directly called by JavaExe :

public static boolean scrsvIsCreate ();

public static boolean scrsvIsDelete ();

public static String[] scrsvGetInfo ();

public static void scrsvInit ();

public static void scrsvFinish ();

public static void scrsvOpenConfig ();

public static void scrsvPaint (Graphics2D g, int wScr, int hScr);

public static boolean scrsvIsExitByKey (int keycode, boolean isUp);

public static boolean scrsvIsExitByMouse (int x, int y, int nbClick, int button, boolean isUp);

These methods are to be declared either in the main class, or in a class with the same name but post fixed by

“_ScreenSaverManagement”. For example, if my main class is called MyApp, then these methods can be indifferently

in MyApp.class or MyApp_ScreenSaverManagement.class.

It is not necessary to declare all them.

1. scrsvIsCreate : This method is called with launching of JavaExe.exe (that is to say MyApp.exe) if the

screensaver is not installed yet. It will be installed only if this method returns TRUE. If this method is not

declared, a dialog box will open asking the user whether or not to install the screensaver.

The method scrsvGetInfo will also be called to get some informations to create the screensaver.

2. scrsvIsDelete : This method will be called with launching of JavaExe.exe (that is to say MyApp.exe) if the

screensaver is already installed. It will be removed only if this method returns TRUE. If this method is not

declared, a dialog box will open asking if the user wants or not to remove the screensaver.

3. scrsvGetInfo : This method is called when creating the screensaver to get some additional information, such

as :

 Description.

30

 Transparency : « 1 » or « TRUE » to indicate that the screensaver will have a transparent

background, otherwise a black background will be put by default.

 Mouse : « 1 » or « TRUE » to indicate that the mouse pointer should be visible.

 Frequency refresh : millisecond value corresponding to the refresh rate, that is to say the wait time

between calls to the scrsvPaint method. Any value less than 100 ms (1/10th of a second) will be

set at 100.

This method returns a String array whose elements correspond to those mentioned above. If this method is not

defined, all this information will be empty and the frequency will be 1000 ms (1 second).

4. scrsvInit : This method, if it is declared, is called with launching of the screensaver before the first call to the

method scrsvPaint and before scrsvGetInfo.

5. scrsvFinish : This method is called when the screensaver is interrupted.

6. scrsvOpenConfig : This method, if it is declared, is called when the user wants to configure the screensaver,

or by right-clicking on the file JavaExe.scr (that is to say MyApp.scr) then "Configure" in the contextual

menu or from the control panel that manages screensavers then "Settings ...".

7. scrsvPaint (Graphics2D g, int wScr, int hScr) : This method is mandatory and will be called at regular

intervals defined by scrsvGetInfo method.

This method has three arguments :

 g : corresponds to the graphics context used by some Java methods.

 wScr : screen width in pixels.

 hScr : screen height in pixels.

The dimensions of the screen always correspond to the dimensions of the desktop, even when viewing in

preview mode in the control panel that manages screensavers. In preview mode, the dimensions match those of the

desktop of the primary screen, in normal execution mode they correspond to the overall dimensions for all screens

attached to the desktop.

8. scrsvIsExitByKey (int keycode, boolean isUp) : If this method is declared and returns TRUE, the screensaver

will be interrupted when a key is pressed (or released).

This method has 2 arguments :

 keycode : code of the key pressed.

 isUp : state of the key, pressed (FALSE) or released (TRUE).

9. scrsvIsExitByMouse (int x, int y, int nbClick, int button, boolean isUp) : If this method is declared and

returns TRUE, the screensaver will stop when the mouse is moved or one of these buttons has been pressed (or

released).

This method has 5 arguments :

 x and y : coordinates of the mouse pointer.

 nbClick : number of clicks, if one of the mouse buttons is pressed, otherwise 0.

 button : mouse button pressed: 1 = left, 2 = right, 3 = middle button if present..

 isUp : state of the button, pressed (FALSE) or released (TRUE).

If neither of these methods interrupt is declared, scrsvIsExitByKey and scrsvIsExitByMouse, the

screensaver will be interrupted at any mouse movement or any key is pressed.

See into Appendix, the JavaExe_I_ScreenSaverManagement interface and example 19.

Additional functionalities

33

System Events Management

This functionality of JavaExe makes it possible the Java application to receive some event of Windows, such

as a connection or disconnection with a network, a change of display, a beginning or end of a session, …

With this intention, it must exist a method which will be used as interface between JavaExe and your Java

application, whose signature is form :

public static int notifyEvent (int msg, int val1, int val2, String val3, int[] arr1, byte[] arr2);

This method is to be declared either in the main class, or in a class of the same name but post fixed by “_

SystemEventManagement”. For example, if my main class is called MyApp, then this method can be indifferently in

MyApp.class or MyApp_SystemEventManagement.class.

The same method is used for all the types of events and its arguments depend on the received message. The

value returned by notifyEvent also depends on the message.

The first argument, msg, contain the type of event and here is the list of the various values :

 WM_COMPACTING : This message is received when the system starts to saturate.

 WM_CONSOLE : This message is sent when JavaExe is launched in console mode

(JavaExe_console.exe) and that an attempt at interruption with take place. The argument val1

contains the type of interruption :

o CTRL_C_EVENT : a CTRL-C is started, but will be cancelled if

notifyEvent returns 0.

o CTRL_BREAK_EVENT : is used by Java for the dump active threads, but

will be cancelled if notifyEvent returns 0.

o CTRL_CLOSE_EVENT : the user tries to close the DOS window and this

attempt will be cancelled if notifyEvent returns 0.

o CTRL_LOGOFF_EVENT : the user with started the closing of its session.

Some is the value returned by notifyEvent this closing will not be stopped.

o CTRL_SHUTDOWN_EVENT : the user with started the shutdown of the system.

Some is the value returned by notifyEvent the system will be stopped.

 WM_DEVICECHANGE : This message means that modification hardware occurred or

requires a confirmation. For example if a peripheral were inserted or removed, or CD-Rom, …

The arguments used are :

o val1 : nature of the modification :

DBT_QUERYCHANGECONFIG

 DBT_CONFIGCHANGED

 DBT_CONFIGCHANGECANCELED

 DBT_DEVICEARRIVAL

 DBT_DEVICEQUERYREMOVE

 DBT_DEVICEQUERYREMOVEFAILED

 DBT_DEVICEREMOVECOMPLETE

 DBT_DEVICEREMOVEPENDING

 DBT_DEVICETYPESPECIFIC

34

o val3 : name of port. Used only by DBT_DEVTYP_PORT.

o arr1 : array of to the more 5 int (that depends on val1)

[0]

[1] = device type

 DBT_DEVTYP_OEM

 DBT_DEVTYP_VOLUME

 DBT_DEVTYP_PORT

[2]

[3] = if [1]=DBT_DEVTYP_VOLUME => value where each binary

position corresponds to a drive : bit 0 = drive A; bit 1 = drive B; ...; bit 26 =

drive Z.

[4] = if [1]=DBT_DEVTYP_VOLUME => 1=media drive (CD-ROM, ...) ;

2=network drive

 WM_DISPLAYCHANGE : This event is received when the resolution of the screen changed.

The arguments used are :

o val1 : the number of bits per pixel. One deducts from it the number of colors by 2^val1.

o val2 : a value on 32 bits broken up as follows: 31...16 15... 0. The bits from 0 to 15

correspond to the width of the screen. The bits from 16 to 31 give the height. To

dissociate these 2 values, it is enough to apply :

w = (val2 & 0x0000FFFF);

h = ((val2>>16) & 0x0000FFFF);

 WM_ENDSESSION : This message is received when the session of the user will be closed.

Either because the user disconnects himself from his login, or that the system is stopped. This

message is not received if the Java application is launched in console mode. The arguments

used are :

o val1 : contains the value 1 if the closing of the session were confirmed, if not 0. (see

message WM_QUERYENDSESSION for this confirmation).

o val2 : allows to know if it acts of a simple disconnection of the user or stop of the

system. If this argument contains value ENDSESSION_LOGOFF then it acts of a

disconnection. It is preferable to test the presence of this value rather (as bits) than the

strict equality :

((val2 & ENDSESSION_LOGOFF) != 0) is preferable with

(val2 == ENDSESSION_LOGOFF)

 WM_NETWORK : This event is received when the state of the network changed. The

arguments used are :

o val1 : the type of change

NET_DISCONNECT

NET_CONNECTING

NET_CONNECTED

o val3 : the name of the interface network concerned.

o arr1 : an array of 13 int used as follows :

[0] = network type

 MIB_IF_TYPE_OTHER

 MIB_IF_TYPE_ETHERNET

35

 MIB_IF_TYPE_TOKENRING

 MIB_IF_TYPE_FDDI

 MIB_IF_TYPE_PPP

 MIB_IF_TYPE_LOOPBACK

 MIB_IF_TYPE_SLIP

[1…4] = the 4 fields of client IP.

[5…8] = the 4 fields of gateway IP.

[9…12] = the 4 fields of network mask.

 WM_POWERBROADCAST : This event is started when the state of the battery or the power

changed. The arguments used are :

o val1 : event type

PBT_APMQUERYSUSPEND

PBT_APMQUERYSUSPENDFAILED

PBT_APMSUSPEND

PBT_APMRESUMECRITICAL

PBT_APMRESUMESUSPEND

PBT_APMBATTERYLOW

PBT_APMPOWERSTATUSCHANGE

PBT_APMOEMEVENT

PBT_APMRESUMEAUTOMATIC

o val2 : authorize or not an interaction with the user (as to display a dialog box...). If this

argument contains 0 any interaction will be authorized.

o arr1 : contains 2 int

[0] = a number of seconds currently usable out of battery.

[1] = total of second usable one out of battery (maximum capacity of the

battery).

o arr2 : contains 3 byte

[0] = 1 if the battery is on the power A/C, if not 0.

[1] = state of charging of the battery (or 255 if unknown).

[2] = percentage of charging (or 255 if unknown).

 WM_QUERYENDSESSION : This event is started when the session will be stopped. A

confirmation is initially requested from the user and if notifyEvent returns 0 the session will

not be stopped. Another message, WM_ENDSESSION, will be automatically sent in all the

cases, after this one with the result of notifyEvent. This message is not received if the Java

application is launched in console mode. The arguments used are :

o val2 : even significance that for message WM_ENDSESSION.

 WM_SESSION_CHANGE : This message is received when that a user connects himself,

disconnects or locks the session. The arguments used are :

o val1 : the reason contains which started this event

WTS_SESSION_LOGGED

WTS_CONSOLE_CONNECT

WTS_CONSOLE_DISCONNECT

WTS_REMOTE_CONNECT

WTS_REMOTE_DISCONNECT

WTS_SESSION_LOGON

WTS_SESSION_LOGOFF

36

WTS_SESSION_LOCK

WTS_SESSION_UNLOCK

WTS_SESSION_REMOTE_CONTROL

o val2 : the number of the session contains concerned, if several sessions can be active at

the same time.

o val3 : contains the name of the domain and the user (its login) who is at the origin of

the event. This information is in format domaine\login.

o arr1 : is used only by WTS_SESSION_LOGGED and contains only one element

indicating if the connected user is that which is currently active.

 WM_SYSCOMMAND : This event gathers various other events.

o val1 : the type of the event :

 SC_SCREENSAVE : event on screensaver. Argument val2 = 1 for starting, 0

for stopping.

 SC_MONITORPOWER : event on monitor power. Argument val2 = -1 for

power on, 2 for power off.

 WM_TIMECHANGE : This event takes place when the time of the system changed. No

argument is used.

 WM_USERCHANGED

See in Appendices the JavaExe_I_SystemEventManagement interface for the value of the constants used,

and also examples 6 and 8 for events systems.

37

Taskbar Management

This functionality makes it possible the Java application to have his icon in the taskbar and possibly one or

two menus associated (a menu for the right click and another for the left click).

Methods used as interface : JavaExe_I_TaskbarManagement

These methods are directly called by JavaExe :

public static String[][] taskGetMenu (boolean isRightClick, int menuID);

public static int taskGetDefaultMenuID (boolean isRightClick);

public static void taskDoAction (boolean isRightClick, int menuID);

public static boolean taskDisplayMenu (boolean isRightClick, Component parent, int x, int y);

public static String[] taskGetInfo ();

public static boolean taskIsShow ();

public static void taskInit (boolean isServiceUI); (or void taskInit() for previous versions)

public static void taskDoBalloonAction ();

public static boolean taskIsBalloonShow ();

public static void taskSetBalloonSupported (boolean isSupported);

public static String[] taskGetBalloonInfo ();

public static void taskDataFromService (Serializable data);

public static boolean taskIsDataForService ();

public static Serializable taskDataForService ();

public static void taskErrorNoService ();

These methods are to be declared either in the main class, or in a class of the same name but post fixed by

“_TaskbarManagement”. For example, if my main class is called MyApp, then these methods can be indifferently in

MyApp.class or MyApp_TaskbarManagement.class.

It is not necessary to declare all them.

1. taskGetMenu (boolean isRightClick, int menuID) : This method is called to obtain the list of the entries of

the menu associated with the icon in the taskbar. This menu will be managed by Windows, however if the

Java application has and manages itself his menu for the icon, this method like taskGetDefaultMenuID and

taskDoAction will be useless (cf the method taskDisplayMenu for the menus suitable for the application). In

this case it will not be necessary to declare it, or then it will have to return the value null.

This method has 2 arguments :

 isRightClick : TRUE contains if the menu to be displayed corresponds to a right click of the

mouse. There can thus be 2 different menus according to whether it acts of the right or left

click.

 menuID : if the list of the entries to be returned corresponds to that of a sub-menu, this

argument contains the number of the entry having this sub-menu. If not the value of the

argument is to 0 (or negative).

The list returned by this method is of String[][] type, i.e. a list which contains a list of values of the

String types. With each entry of the menu a list of values of the form corresponds:

38

 { ID, LABEL, TYPE, STATUS }

Where :

 ID = a single number for this entry. The value must be strictly higher than 0.

 LABEL = the text which will be displayed.

 TYPE = the nature of the entry (see lower).

 STATUS = the state of the entry to displaying (see lower).

With TYPE :

 MFT_MENUBARBREAK = place the entry in a new column with a vertical separation.

 MFT_MENUBREAK = place the entry in a new column without separation.

 MFT_RADIOCHECK = if the entry is in the state checked, it will then be displayed in

the form of radio-button.

 MFT_SEPARATOR = display a horizontal separation. LABEL is then ignored.

 MFT_RIGHTORDER = display the text of the right-hand side towards the left.

If no value is specified, it will be then a simple text, aligned to left, which will be displayed.

The values of the TYPE are mixables between them except MFT_MENUBARBREAK with

MFT_MENUBREAK. For example :

 { ID, LABEL, ""+(MFT_MENUBREAK | MFT_RIGHTORDER), STATUS }

With STATUS :

 MFS_DISABLED = if the entry of the menu is disabled.

 MFS_CHECKED = if the entry is checked.

 MFS_HILITE = if the entry is preselected.

 MFS_ADMIN = if the entry has the Admin icon (or according Windows).

 If no value is specified, the entry of the menu simply active and will then be unchecked.

 The values of STATUS are also mixables between them.

2. taskGetDefaultMenuID (boolean isRightClick) : This method makes it possible to define which is the entry

of the menu which will be taken by default at the time of double-click on the icon. This entry will then be

bold in the menu. If this method is not declared or if it returns 0 (or a negative value), no entry will be

defined.

The argument of this method, isRightClick, contains TRUE if that relates to the menu for the right click

of the mouse.

3. taskDoAction (boolean isRightClick, int menuID) : This method do the action to make when an entry of the

menu will have been selected.

This method has 2 arguments :

 isRightClick : TRUE contains if the menu concerned is that of the right click of the mouse.

 menuID : the number of the entry selected by the user.

4. taskDisplayMenu (boolean isRightClick, Component parent, int x, int y) : This method make the displaying

and the management of the menu associated with the icon. It returns TRUE if the menu is managed by this

method.

This method has 4 arguments :

39

 isRightClick : TRUE contains if the menu to be managed corresponds to a right click of the

mouse. There can thus be 2 different menus according to whether it acts of the right or left

click.

 parent : according to the way in which the menu will be managed by the Java application, it

can be necessary to have a relative object to which this menu will be attached. This relative

object is created by JavaExe.

 x and y : co-ordinates where must be displayed the menu, corresponding to the corner lower

right of this menu.

5. taskGetInfo : This method makes it possible to obtain various information for the displaying and the

management of the icon and his menu. This method returns a table of String containing in the order :

 The description of the icon, which will be displayed when the mouse passes above.

 The type of action to be made for a simple right click of the mouse (by default it will be

ACT_CLICK_MENU, see lower).

 The type of action to be made for a double right click of mouse (ACT_CLICK_NOP by

default).

 The type of action to be made for a simple left click of mouse (ACT_CLICK_NOP by

default).

 The type of action to be made for a double left click of mouse (ACT_CLICK_OPEN by

default).

There are 3 types of possible action :

ACT_CLICK_NOP = do nothing

ACT_CLICK_OPEN = execute the action defined by the method taskDoAction with

the entry of the menu returned by the method taskGetDefaultMenuID.

ACT_CLICK_MENU = display the menu by calling the method taskDisplayMenu

initially. If the latter is not defined or returns FALSE, then the method taskGetMenu will be called.

6. taskIsShow : This method is regularly called by JavaExe to know if the icon must be displayed or hidden. If

the method returns TRUE the icon will be displayed.

7. taskInit (boolean isServiceUI) : This method is called at launching of the application. The isServiceUI

argument is TRUE if this TaskbarManagement is part of an interactive service. However, for compatibility

with previous versions of JavaExe, this same method is also accepted without argument

8. taskDoBalloonAction : This method supports the action to take when a click has been held in the balloon.

9. taskIsBalloonShow : This method is regularly called by JavaExe to know if a message is ready to be

displayed with the icon. If the method returns TRUE, then the method taskGetBalloonInfo will be called to

obtain the message.

10. taskSetBalloonSupported (boolean isSupported) : This method is called at launching of the application to

inform it if the version of Windows supports or not the balloon on icon. If the argument of this method

contains TRUE, then the system supports the balloon management.

11. taskGetBalloonInfo : This method makes it possible to obtain the message of icon to be displayed and some

information complementary. It will be called when the method taskIsBalloonShow returns TRUE, like at

launching of the application. This method returns a table of String containing in the order :

40

 Title of message.

 Message to display.

 Type of message.

 Duration of displaying of the message (in seconds).

With « Type of message » :

 NIIF_NONE = neutral message.

 NIIF_INFO = information message.

 NIIF_WARNING = warning message.

 NIIF_ERROR = error message.

 NIIF_USER = message with the application’s icon.

12. taskDataFromService (Serializable data) : This method will be called by the service (if the application Java

is launched in service mode) with in argument an object for the interactive part.

13. taskIsDataForService : This method will have to return TRUE if an object is available for the service part.

14. taskDataForService : This method returns an object for the service.

15. taskErrorNoService : This method is called if the service has not been created.

With these three methods their counterpart in ServiceManagement corresponds. See the chapter “Running as a

Service” for the detail of these methods and some complementary explanations on the services in interaction with the

Desktop, as well as the JavaExe_I_ServiceManagement interface in Appendix.

See in Appendices the JavaExe_I_TaskbarManagement interface for the value of the constants used, and

also examples 4, 5 and 8 using the management of the taskbar.

41

Windows Registry Management

This feature allows the Java application to access the registry of Windows in both reading and writing and to

perform all possible operations: creation and deletion of a key or value, read and modify a value, ...

Methods used as interface : JavaExe_I_RegistryManagement

To do this, simply declare some static methods in the main class or in a class with the same name but post

fixed with "_RegistryManagement". For example, if my main class is called MyApp, then these methods may be

declared either in MyApp.class or MyApp_RegistryManagement.class.

It is not necessary all declare them, only those that the Java application needs. It should be noted that these

methods are native type, that is to say that it is not necessary to define the method bodies, but only their signature,

such as:

 public static native String regGetValueSTR (int hkey, String pathKey, String nameValue, boolean isExpandVal);

 public static native byte[] regGetValueBIN (int hkey, String pathKey, String nameValue);

 public static native int regGetValueDWORD (int hkey, String pathKey, String nameValue);

 public static native long regGetValueQWORD (int hkey, String pathKey, String nameValue);

 public static native String[] regGetValueMULTI (int hkey, String pathKey, String nameValue);

 public static native boolean regSetValueSTR (int hkey, String pathKey, String nameValue, String val, boolean isTypeExpand);

 public static native boolean regSetValueBIN (int hkey, String pathKey, String nameValue, byte[] val);

 public static native boolean regSetValueDWORD (int hkey, String pathKey, String nameValue, int val

,boolean isTypeBigEndian);

 public static native boolean regSetValueQWORD (int hkey, String pathKey, String nameValue, long val);

 public static native boolean regSetValueMULTI (int hkey, String pathKey, String nameValue, String[] val);

 public static native int regGetTypeValue (int hkey, String pathKey, String nameValue);

 public static native boolean regCreateKey (int hkey, String pathKey);

 public static native boolean regDeleteKey (int hkey, String pathKey);

 public static native boolean regDeleteValue (int hkey, String pathKey, String nameValue);

 public static native String[] regEnumKeys (int hkey, String pathKey);

 public static native String[] regEnumValues (int hkey, String pathKey);

In the previous version of JavaExe, these methods were prefixed by "nativeReg_" and now they are by "reg",

but the two notations are accepted.

In general, the arguments hkey correspond to the root from which starts the key, possible values are found to

the Appendix in the JavaExe_I_RegistryManagement interface. The commonly used values are

HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE. For further explanation of these values, visit the

Microsoft MSDN
®
: http://msdn.microsoft.com/en-us/library/ms724836.aspx.

Then the arguments pathKey correspond to a path to access a key (excluding the value name). The names of

keys are separated by a back-slash ('\'). For example: "Software\JavaExe\Examples".

The arguments nameValue correspond to a value name.

And finally the arguments val is the value that you want to associate to nameValue. Its type depends on the

method used. See http://msdn.microsoft.com/en-us/library/ms724884.aspx for more information on the types in the

Windows Registry.

http://msdn.microsoft.com/en-us/library/ms724836.aspx
http://msdn.microsoft.com/en-us/library/ms724884.aspx

42

Also note that numbers can be stored in the registry in two formats. For example a 32-bit integer

(0x12345678) will be stored:

 « Little Endian » : in the form 0x78 0x56 0x34 0x12

 « Big Endian » : in the form 0x12 0x34 0x56 0x78

Native methods to be declared:

Methods to retrieve values:

1. regGetValueSTR: retrieves a String value associated to nameValue located at the end of pathKey path. The

value stored in the Windows registry must be of type REG_SZ, REG_EXPAND_SZ or REG_LINK,

otherwise the method returns null. The argument isExpandVal is used in the case of a REG_EXPAND_SZ

value and can interpret (or not) the environment variables contained in the value. If the value is not found

from the specified path, the method returns null.

2. regGetValueBIN: retrieves the value as a byte array corresponding to the data stored as is without

interpretation or processing. The type of the value stored in the Windows Registry does not matter. If the

value is not found the method returns null.

3. regGetValueDWORD: to retrieve the value to int (32 bits). The value stored in the Windows Registry must

be of type REG_DWORD or REG_DWORD_BIG_ENDIAN. For the latter, the value is automatically

converted to "Little Endian" which is the standard format of numbers in Windows. If the value is of another

type or does not exist, the method will return 0.

4. regGetValueQWORD: retrieves a value to type long (64 bits). The value stored in the Windows Registry

must be a REG_QWORD. If the value is of another type or does not exist, the method will return 0.

5. regGetValueMULTI: retrieves a value in a String array. The value stored in the Windows Registry must be

of type REG_MULTI_SZ. If the value is of another type or does not exist, the method returns null.

Methods to change the values:

6. regSetValueSTR: modify or create a value of type REG_SZ, or REG_EXPAND_SZ if the argument

isTypeExpand is true. If the path pathKey contains keys that do not exist, these will be created. The method

returns true if the operation was successful.

7. regSetValueBIN: modify or create a value of type REG_BINARY. The keys path will be created if

necessary. The method returns true if the operation was successful.

8. regSetValueDWORD: modify or create a value of type REG_DWORD, or REG_DWORD_BIG_ENDIAN

if the argument isTypeBigEndian is true. The keys path will be created if necessary. The method returns

true if the operation was successful.

9. regSetValueQWORD: modify or create a value of type REG_QWORD (64 bits). The keys path will be

created if necessary. The method returns true if the operation was successful.

10. regSetValueMULTI: modify or create a value of type REG_MULTI_SZ. The keys path will be created if

necessary. The method returns true if the operation was successful.

Method to retrieve information about the values:

43

11. regGetTypeValue: provides the type of a value stored in the Windows Registry. The return types are:

REG_NONE (= 0) : if the value is not found from the specified path.

REG_SZ (= 1) : String (Unicode).

REG_EXPAND_SZ (= 2) : String (Unicode) containing environment variables.

REG_BINARY (= 3) : raw binary data.

REG_DWORD (= 4) : 32-bits integer.

REG_DWORD_BIG_ENDIAN (= 5) : 32-bits integer in format « BigEndian ».

REG_LINK (= 6) : String (Unicode) corresponding to a symbolic link to Registry (should not be

used).

REG_MULTI_SZ (= 7) : list of Strings (Unicode).

REG_QWORD (= 11) : 64-bits integer.

Visit the Microsoft
®
 MSDN http://msdn.microsoft.com/en-us/library/ms724884.aspx for more

information on the types in the Windows Registry.

Methods for the creation or deletion:

12. regCreateKey: create nonexistent keys in the specified path pathKey. The method returns true if the

operation was successful or if all the keys already exist.

13. regDeleteKey: Deletes a key located at the end of the path pathKey. This key can hold values, which will be

removed with it, but must not have subkeys. The method returns true if the operation was successful.

14. regDeleteValue: Deletes the value named nameValue in Windows Registry. The method returns true if the

operation was successful.

Methods to retrieve the list of names:

15. regEnumKeys: returns the list of subkeys contained directly in the path pathKey. The method will return

null if the specified path is invalid.

16. regEnumValues: returns a list of value names contained directly in the path pathKey. The method will

return null if the specified path is invalid.

See in Appendices, the JavaExe_I_RegistryManagement interface for the value of the constants used, and

also the examples 9 and 10 which using the Windows Registry management.

http://msdn.microsoft.com/en-us/library/ms724884.aspx

45

Dynamic Splash Screen

This feature allows the Java application to update dynamically the splash screen previously defined (see the

section on static splash screen, page 20), and takes effect after displaying it.

Methods used as interface : JavaExe_I_SplashScreenManagement

To do this, simply declare some static methods in the main class or in a class with the same name but post

fixed with "_SplashScreenManagement". For example, if my main class is called MyApp, then these methods may be

declared either in MyApp.class or MyApp_SplashScreenManagement.class.

It is not necessary all declare them, only those that the Java application needs.

1. public static void sphInit ();

2. public static void sphFinish ();

3. public static boolean sphIsClose (); (or isCloseSplash for the previous versions of JavaExe).

4. public static int sphGetTickCount ();

5. public static String[] sphGetProgressBarInfo ();

6. public static int sphGetProgressBarValue ();

7. public static void sphPaint (Graphics2D g, int wWnd, int hWnd);

1. sphInit : This method is called before any other methods of this feature, but after displaying the static splash

screen.

2. sphFinish : This method will be called after closing the splash screen.

3. sphIsClose (or isCloseSplash) : This method, that must return TRUE to close the splash screen, is called at

regular time interval (defined by the sphGetTickCount method). While it returns FALSE, the screen will

remain visible.

4. sphGetTickCount : This method returns the refresh rate (in milliseconds), that is to say, the wait time

between calls to the sphPaint method. Any value less than 100 ms (1/10th of a second) will be set at 100.

If this method is not declared, the refresh rate is set to 1000 ms (1 second).

5. sphGetProgressBarInfo : If this method is declared, a progress bar will be displayed at the coordinates,

relative to the splash screen, which will be returned by this method as a String[] :

 [0] : X relative to the left edge of the splash screen.

 [1] : Y relative to the top edge of the splash screen. If this value is negative, the positioning will

be relative to the bottom edge minus the height of the bar defined in [3].

 [2] : W of the bar. If this value is negative, the width will be that of the splash screen minus X.

 [3] : H of the bar. If this value is negative, it is set at 20 pixels by default.

 [4] : maximum increment value of the progress bar. The current increment value symbolizes

the progress and when this value reaches the maximum value, the splash screen will close.

If this method is not declared but sphGetProgressBarValue is, then the following values will be used by

default: {0, -1, -1, 20, 10}. That is to say that the bar is positioned in the lower left corner, occupy the full width with

a height of 20 pixels and the maximum increment is set at 10.

6. sphGetProgressBarValue : If this method is declared, a progress bar will be displayed at the coordinates

returned by the sphGetProgressBarInfo method and will be called at regular time interval (defined by the

46

sphGetTickCount method) to return the current value of the increment of progress. When this value reaches

the maximum value, the splash screen will close.

If this method is not declared (but sphGetProgressBarInfo is) the progress value is automatically

incremented by 1 at each call.

If none of the two methods, sphGetProgressBarInfo and sphGetProgressBarValue, is declared then no

progress bar will be displayed.

7. sphPaint (Graphics2D g, int wWnd, int hWnd) : This method will be called according to the refresh rate

(defined by sphGetTickCount) to change the image of the splash screen, that its dimensions are wWnd by

hWnd pixels. The argument g is the graphics context and will be pre-filled at each call with the image of the

static splash screen.

If the progress bar should be displayed, it will be after calling this method.

47

Admin/User Section Management

This feature allows the Java application to run in administrator mode, either another application, or itself but

entirely or only a part of itself.

Methods used as interface : JavaExe_I_SectionManagement

To do this, simply declare some static methods in the main class or in a class with the same name but post

fixed with "_SectionManagement". For example, if my main class is called MyApp, then these methods may be

declared either in MyApp.class or MyApp_SectionManagement.class.

It is not necessary all declare them, only those that the Java application needs.

Some of these methods are native type, that is to say, it is not necessary to define the methods body, but only

their signature.

1. public static native boolean sectionIsAdmin ();

2. public static native boolean sectionExecAsAdmin (String pathname, String[] mainArgs);

3. public static native void sectionRestartAsAdmin (Serializable data, String[] mainArgs);

4. public static native void sectionSetIconAdmin (Component comp);

5. public static native boolean sectionStartAdminThread (int numID, Serializable data, boolean isWait);

6. public static void sectionSetDataRestart (Serializable data);

7. public static void sectionMainAdmin (int numID, Serializable data);

8. public static void sectionClosedAdminThread (int numID);

9. public static boolean sectionIsDataForAdmin (int numID);

10. public static Serializable sectionDataForAdmin (int numID);

11. public static void sectionDataFromAdmin (int numID, Serializable data);

12. public static boolean sectionIsDataForUser ();

13. public static Serializable sectionDataForUser ();

14. public static void sectionDataFromUser (Serializable data);

Methods to declare in native :

1. sectionIsAdmin : This method determines if the application is running in administrator mode or not.

2. sectionExecAsAdmin (String pathname, String[] mainArgs) : This method allows you to run another

application in administrator mode. The pathname argument is the full path of the application including the

name of the executable. The mainArgs argument contains the arguments that will be passed to the

application. This method returns TRUE if the elevation in Admin mode been confirmed by the user and the

application has been launched. This method does not wait for the execution of the application, it will return

TRUE or FALSE immediately after the prompting for elevation.

3. sectionRestartAsAdmin (Serializable data, String[] mainArgs) : This method is used to restart the Java

application in administrator mode with the same arguments of main() initially used to launch the application.

This method has 2 arguments :

48

 data : object to send (or null if no object) to the application after it restarted in Admin mode

before calling the main(). The application in Admin mode will receive this object from the

method sectionSetDataRestart.

 mainArgs : list of additional arguments to be added to those that were used to initially start it in

normal mode. These arguments (initial and additional) will be received by the main() of

application in Admin mode.

This method applies only to a type of launch of Application or Service (for the interactive part only)

and will have no effect on other types of launch.

4. sectionSetIconAdmin (Component comp) : This method allows to set, at a Swing or AWT component, the

icon (or depending on the version of Windows) symbolizing the elevation request in administrator

mode.

5. sectionStartAdminThread (int numID, Serializable data, boolean isWait) : This method allows you to run

only a part of the Java application in administrator mode. In the remainder of this chapter, partial execution is

called a AdminThread. This method returns TRUE if the numID is not currently use and the elevation in

Admin mode been confirmed by the user. It has 3 arguments :

 numID : unique number (>= 0) to identify the AdminThread to perform.

 data : data to send to the AdminThread at its launch.

 isWait : If this argument is TRUE, calling this method will block until the end of the

corresponding AdminThread. It is important to note that this blocking also will impact the

events of interaction with the user if this method is called from the main thread of the

application. In this case it will be necessary to call this method from a secondary thread (see

Example 14 for a specific case).

During the call to this method, another will be called sectionMainAdmin (with the same arguments numID

and data), which is the entry point of the partial execution in Admin mode, while the main() is the entry point

for a full execution (admin or normal).

Restarting management in Admin mode :

6. sectionSetDataRestart (Serializable data) : This method is called before main(), when the Java application

was restarted in Admin mode with sectionRestartAsAdmin method and receives the same data argument.

AdminThread Management :

7. sectionMainAdmin (int numID, Serializable data) : This method thus serves as an entry point to a partial

execution in Admin mode, triggered by sectionStartAdminThread method and receives the same arguments,

numID and data.

8. sectionClosedAdminThread (int numID) : This method is called, the side of the non-admin Java

application, when the AdminThread matching to numID has completed execution.

Methods for communication between AdminThread and non-admin part :

9. sectionIsDataForAdmin (int numID) : This method returns TRUE if an object is available for the

AdminThread matching to numID.

10. sectionDataForAdmin (int numID) : This method returns an object to the AdminThread matching to

numID.

49

11. sectionDataFromAdmin (int numID, Serializable data) : This method will be called by the non-admin part

with in argument an object from the AdminThread matching to numID.

12. sectionIsDataForUser : This method returns TRUE if an object from the current AdminThread is available

for non-admin part.

13. sectionDataForUser : This method returns an object for non-admin part from the current AdminThread.

14. sectionDataFromUser (Serializable data) : This method will be called by the current AdminThread and

receives in argument an object from the non-admin part.

Communication methods between AdminThread and non-admin section are based on the same principle (and

therefore with the same constraints instances) for interactive services. That is to say that each AdminThread running

in a different instance of the non-admin part.

Here is a diagram summarizing communication between AdminThread and non-admin section :

JavaExe_I_ SectionManagement

AdminThread

numID = 0

JavaExe_I_ SectionManagement

non-admin

section
(User)

AdminThread

numID = N

JavaExe

51

 Service Control Management

This feature allows the Java application to manage any Windows services, that is to say, create, delete, start,

stop, configure, ...

Methods used as interface : JavaExe_I_ServiceControlManagement

To do this, simply declare some static methods in the main class or in a class with the same name but post

fixed with "_ServiceControlManagement". For example, if my main class is called MyApp, then these methods may

be declared either in MyApp.class or MyApp_ServiceControlManagement.class.

It is not necessary all declare them, only those that the Java application needs.

It should be noted that these methods are native type, that is to say that it is not necessary to define the

method bodies, but only their signature, such as :

1. public static native int scmCreateService (String nameSvc, String nameLong, String descr, String pathnameExe, boolean isAuto

,boolean isDelayed);

2. public static native int scmDeleteService (String nameSvc);

3. public static native int scmStartService (String nameSvc);

4. public static native int scmStopService (String nameSvc);

5. public static native int scmPauseService (String nameSvc);

6. public static native int scmContinueService (String nameSvc);

7. public static native int scmChangeConfig (String nameSvc, String nameLong, int serviceType, int startType, String pathnameExe

,String dependencies, String login, String passwd);

8. public static native int scmSetDescription (String nameSvc, String descr);

9. public static native int scmSetFailures (String nameSvc, String actions, String delays, String exeFailure, String msgBoot

,int resetTime);

10. public static native int scmSetDelayedAutoStart (String nameSvc, boolean isDelayed);

11. public static native String[][] scmEnumServices (int serviceType, int serviceState, boolean isFullInfo);

12. public static native String[][] scmEnumDependentServices (String nameSvc, int serviceState, boolean isFullInfo);

13. public static native String[] scmQueryConfig (String nameSvc);

14. public static native String[] scmQueryStatus (String nameSvc);

15. public static native String[] scmGetFailures (String nameSvc);

16. public static native String scmGetDescription (String nameSvc);

17. public static native String scmGetNameLong (String nameSvc);

18. public static native String scmGetNameSvc (String nameLong);

19. public static native boolean scmIsDelayedAutoStart (String nameSvc);

20. public static native String scmGetErrorMessage (int numErr);

Generally, the nameSvc arguments correspond to the service short name (usually the name of the .exe file),

Each service is identified by this name. While nameLong arguments correspond to a long name, that is to say a short

description.

The nameSvc arguments can be null if and only if the Java application that calls these methods is recognized

as a service. In this case nameSvc matches the name .exe file, but without the extension.

Methods of creation / deletion :

52

1. scmCreateService (String nameSvc, String nameLong, String descr, String pathnameExe, boolean isAuto,

boolean isDelayed) :

This method allows you to create a service that will be identified by nameSvc, whose path to the

executable file is indicated by pathnameExe (including the name of the .exe itself). Once the service has

been created, its nameSvc cannot be changed. This method returns 0 if successful, otherwise an error number.

The other arguments correspond to :

 descr : long description of the service.

 isAuto : TRUE if the service should be started automatically with the system.

 isDelayed : TRUE if the service will be started in delayed mode (it means that it should start

automatically), that is to say, it will be started after all automatic services non-delayed are

started.

2. scmDeleteService (String nameSvc) :

This method removes a service identified by nameSvc. If this service is running, it will not be stopped

but marked "For Deleting" (that is to say that its startup type is set to SERVICE_DISABLED) and will actually

be deleted when the system restarts, or when the service will be stopped.

This method returns 0 if successful, otherwise an error number.

Methods to change the status :

3. scmStartService (String nameSvc) : This method is used to start a stopped service identified by nameSvc

and returns 0 if successful, otherwise an error number.

4. scmStopService (String nameSvc) : This method stops a service, running or paused, identified by nameSvc

and returns 0 if successful, otherwise an error number.

5. scmPauseService (String nameSvc) : This method allows you to pause a running service identified by

nameSvc and returns 0 if successful, otherwise an error number.

6. scmContinueService (String nameSvc) : This method allows to continue the execution of a paused service,

identified by nameSvc and returns 0 if successful, otherwise an error number.

Methods to configure :

7. scmChangeConfig (String nameSvc, String nameLong, int serviceType, int startType, String pathnameExe,

String dependencies, String login, String passwd) :

This method allows you to change certain attributes of the basic configuration of a service, identified by

nameSvc, such as :

 nameLong : new long name (short description) of the service, or null if no change.

 serviceType : new type of service (see the possible values in the Appendix), or

SERVICE_NO_CHANGE if no change.

 startType : new startup type (see possible values in the Appendix), or

SERVICE_NO_CHANGE if no change.

 pathnameExe : new path to the executable file, or null if no change.

 dependencies : new dependencies of the service, or null if no change.

 login : new login used by the service, or null if no change.

 passwd : new password (associated with the login), or null if no change.

This method returns 0 if successful, otherwise an error number.

8. scmSetDescription (String nameSvc, String descr) :

This method allows you to change the long description of a service identified by nameSvc. If descr

argument is null, no changes will be made. This method returns 0 if successful, otherwise an error number.

53

9. scmSetFailures (String nameSvc, String actions, String delays, String exeFailure, String msgBoot, int

resetTime) :

This method allows you to change the failure actions of the service identified by nameSvc :

 actions : list of actions (see page 21 for more details), or null if no change.

 delays : List of delays (see page 21 for more details), or null if no change.

 exeFailure : path to an executable file (including its arguments) in case of failure when the

action list contains RUN, or null if no change.

 msgBoot : message will be displayed on the computer when the action list contains REBOOT,

or null if no change.

 resetTime : delays to reset the actions counter (see page 21 for more details).

This method returns 0 if successful, otherwise an error number.

10. scmSetDelayedAutoStart (String nameSvc, boolean isDelayed) :

This method allows you to change the attribute of the automatic delayed of service identified by

nameSvc. If isDelayed argument is TRUE, the service will launch with delay (this implies that it is configured

to start automatically).

This method returns 0 if successful, otherwise an error number.

Enumeration of services :

11. scmEnumServices (int serviceType, int serviceState, boolean isFullInfo) :

This method provides a list of services that meet certain criteria, such as :

 serviceType : filter by type of service : SERVICE_WIN32 for application services,

SERVICE_DRIVER for system kernel services, SERVICE_TYPE_ALL for all services (see

Appendix for all values).

 serviceState : filter according to the status of the service: SERVICE_ACTIVE for active

service, SERVICE_INACTIVE for inactive, SERVICE_STATE_ALL for both.

The result will be an array in which each element corresponds to a single service corresponding to the

criteria and contains information (as String[]) on this service, such as :

 [0] : short name of the service (nameSvc).

 [1] : long name of service (short description).

 [2] : service status : SERVICE_STOPPED (1), SERVICE_RUNNING (4), SERVICE_PAUSED

(7), … (see the possible values in Appendix).

Then if isFullInfo argument is TRUE, more information will be available :

 [3] : service type : SERVICE_KERNEL_DRIVER (1), SERVICE_WIN32_OWN_PROCESS

(16), …

 [4] : accepted control codes : SERVICE_ACCEPT_STOP (1) service accepts to be stopped,

SERVICE_ACCEPT_PAUSE_CONTINUE (2) service accepts to be paused, …

 [5] : startup type : SERVICE_AUTO_START (2) automatic startup,

SERVICE_DEMAND_START (3) manual startup, …

 [6] : value 1 if the automatic startup is delayed, otherwise 0.

 [7] : long description.

12. scmEnumDependentServices (String nameSvc, int serviceState, boolean isFullInfo) :

This method provides a list of services that depend on the service identified by nameSvc. These services

can be enabled or disabled according to the argument serviceState. The result of this method is the same as

before, with the method scmEnumServices.

54

Information Request :

13. scmQueryConfig (String nameSvc) : This method provides some configuration information for a service

identified by nameSvc. The result is a String[] whose values are :

 [0] : long name of service (short description).

 [1] : pathname of the executable file.

 [2] : dependencies of the service (services list separated by "/")..

 [3] : login used by the service.

 [4] : service type : SERVICE_WIN32_OWN_PROCESS (16), …

 [5] : startup type : SERVICE_AUTO_START (2), …

14. scmQueryStatus (String nameSvc) : This method provides some status information of a service identified by

nameSvc. The result is a String[] whose values are :

 [0] : current status : SERVICE_STOPPED (1), SERVICE_RUNNING (4), …

 [1] : service type : SERVICE_WIN32_OWN_PROCESS (16), …

 [2] : accepted control codes : SERVICE_ACCEPT_STOP (1) , …

 [3] : PID number if the service is running.

15. scmGetFailures (String nameSvc) : This method provides some information on actions failure of a service

identified by nameSvc. The result is a String[] whose values are :

 [0] : actions list separated by "/" (for more details, see page XX).

 [1] : delays list separated by "/" (for more details, see page XX).

 [2] : pathname to executable file (including its arguments) in case of failure when the action list

contains RUN.

 [3] : message will be displayed on the computer when the action list contains REBOOT.

 [4] : period reset of the failure actions counter.

16. scmGetDescription (String nameSvc) : This method provides a long description of a service identified by

nameSvc.

17. scmGetNameLong (String nameSvc) : This method provides the long name of a service identified by

nameSvc.

18. scmGetNameSvc (String nameLong) : This method provides the short name (nameSvc) of a service

identified by its long name nameLong.

19. scmIsDelayedAutoStart (String nameSvc) : This method returns TRUE if the service identified by nameSvc

is configured to be launched in automatic delayed.

20. scmGetErrorMessage (int numErr) : This method returns the error message corresponding to the error

number numErr. This message depends on the language installed by default on Windows.

55

System Management

This feature allows the Java application to call some Windows systems functions such as standby, shutdown

or restart the system, or the user log off, …

Methods used as interface : JavaExe_I_SystemManagement

To do this, simply declare some static methods in the main class or in a class with the same name but post

fixed with "_SystemManagement". For example, if my main class is called MyApp, then these methods may be

declared either in MyApp.class or MyApp_SystemManagement.class.

It is not necessary all declare them, only those that the Java application needs.

These methods are native type, that is to say that it is not necessary to define the method bodies, but only

their signature.

1. public static native int systemShutdown (String msg, int timeOut, boolean isReboot, boolean isForce, boolean isPlanned);

2. public static native int systemAbortShutdown ();

3. public static native int systemOpenDialogShutdown (boolean isReboot, boolean isForce);

4. public static native int systemStandby (boolean isHibernate, boolean isDisableWake);

5. public static native int systemLock ();

6. public static native int systemUserLogoff (boolean isForce);

7. public static native int systemOpenDialogLogoff (boolean isForce);

8. public static native int systemSetRequiredState (boolean isNoScreenSaver, boolean isNoDisplayOff, boolean isNoStandby);

9. public static native int systemBlockShutdown (String reason);

10. public static native int systemUnblockShutdown ();

11. public static native boolean systemIsLocked ();

12. public static native boolean systemIsShutdownAllowed ();

13. public static native boolean systemIsHibernateAllowed ();

14. public static native boolean systemIsStandbyAllowed ();

15. public static native String systemGetErrorMessage (int numErr);

Methods of shutdown and restarting :

1. systemShutdown (String msg, int timeOut, boolean isReboot, boolean isForce, boolean isPlanned) :

This method is used to trigger the shutdown, possibly followed by a reboot if the isReboot argument is

TRUE. The other arguments are :

 msg : message will be displayed for a while (defined by timeOut argument, if greater than 0),

or null if no message.

 timeOut : delay (in seconds) before triggering of the shutdown, or 0 for an immediate

shutdown.

 isForce : TRUE to force applications to quit without waiting for confirmation.

 isPlanned : TRUE to indicate that this is a planned shutdown, that is to say not unexpected.

Some versions of Windows will display a warning when the system is restarted after an

unexpected shutdown.

This method returns 0 if successful, otherwise an error number.

2. systemAbortShutdown : This method allows you to cancel a request for non immediate shutdown and

returns 0 if successful, otherwise an error number.

56

3. systemOpenDialogShutdown (boolean isReboot, boolean isForce) : This method opens a Windows dialog

box asking the user whether to shutdown or restart the system (depending on the argument isReboot). The

other argument (isForce) is the same as systemShutdown. This method returns 0 if successful, otherwise an

error number.

Method of standby :

4. systemStandby (boolean isHibernate, boolean isDisableWake) :

This method allows the system to standby or hibernation if the argument isHibernate is TRUE. If

isDisableWake argument is TRUE, the system standby cannot be awakened by automatic triggering events,

such as WindowsUpdate example. It returns 0 if successful, otherwise an error number.

Methods for the logged on user :

5. systemLock : This method allows the user currently logged on to lock the computer and returns 0 if

successful, otherwise an error number.

6. systemUserLogoff (boolean isForce) : This method allows the user currently logged on, to disconnect and

returns 0 if successful, otherwise an error number. If isForce argument is TRUE, the applications will be forced

to leave without waiting for confirmation.

7. systemOpenDialogLogoff (boolean isForce) : This method opens a Windows dialog box asking if the user

wants to log off now or later, and returns 0 if successful, otherwise an error number. The argument isForce is

the same as before.

Blocking methods :

8. systemSetRequiredState (boolean isNoScreenSaver, boolean isNoDisplayOff, boolean isNoStandby) :

This method prevents the running of the screensaver (if isNoScreenSaver is TRUE) or monitor off (if

isNoDisplayOff is TRUE), or automatic standby (if isNoStandby is TRUE). This method returns 0 if successful,

otherwise an error number.

9. systemBlockShutdown (String reason) : This method will block a shutdown. The reason for this block is

provided by the argument reason and will be displayed on some versions of Windows. This method returns 0

if successful, otherwise an error number.

10. systemUnblockShutdown : This method cancels the previous blocking and re-authorizes the shutdown. It

returns 0 if successful, otherwise an error number.

Information request :

11. systemIsLocked : This method returns TRUE if the computer is locked. It will always return FALSE if it is

called from a service (except for its interactive part).

12. systemIsShutdownAllowed : This method returns TRUE if Windows allows a system shutdown.

13. systemIsHibernateAllowed : This method returns TRUE if Windows allows hibernation.

14. systemIsStandbyAllowed : This method returns TRUE if Windows allows standby.

15. systemGetErrorMessage (int numErr) : This method returns the error message corresponding to the error

number numErr. This message depends on the language installed by default on Windows.

Appendices

59

Java Interfaces

These interfaces aren't used by JavaExe but are provided as a guide only to have access to the constants

needed in different features. Class methods defined therein are just a reminder since the methods defined in an

interface apply to instances.

ApplicationManagement

interface JavaExe_I_ApplicationManagement

{
 public static boolean isOneInstance (String[] args);

public static boolean sessionIsRestore();

public static String[] sessionGetMainArgs();

public static Serializable sessionGetData();

public static void sessionSetData (Serializable data);

}

ControlPanelManagement

interface JavaExe_I_ControlPanelManagement

{
 static final int CATGR_NONE = -1;

 static final int CATGR_OTHER = 0;

 static final int CATGR_THEMES = 1;

 static final int CATGR_HARDWARE = 2;

 static final int CATGR_NETWORK = 3;

 static final int CATGR_SOUND = 4;

 static final int CATGR_PERF = 5;

 static final int CATGR_REGIONAL = 6;

 static final int CATGR_ACCESS = 7;

 static final int CATGR_PROG = 8;

 static final int CATGR_USER = 9;

 static final int CATGR_SECURITY = 10;

 /***/

 public static boolean cplIsCreate ();

 public static boolean cplIsDelete ();

 public static void cplOpen ();

 public static String[] cplGetInfo ();

}

60

RegistryManagement

interface JavaExe_I_RegistryManagement

{
 static final int HKEY_CLASSES_ROOT = 0x80000000;

 static final int HKEY_CURRENT_USER = 0x80000001;

 static final int HKEY_LOCAL_MACHINE = 0x80000002;

 static final int HKEY_USERS = 0x80000003;

 static final int HKEY_PERFORMANCE_DATA = 0x80000004;

 static final int HKEY_CURRENT_CONFIG = 0x80000005;

 static final int HKEY_DYN_DATA = 0x80000006;

 static final int REG_NONE = 0;

 static final int REG_SZ = 1;

 static final int REG_EXPAND_SZ = 2;

 static final int REG_BINARY = 3;

 static final int REG_DWORD = 4;

 static final int REG_DWORD_BIG_ENDIAN = 5;

 static final int REG_LINK = 6;

 static final int REG_MULTI_SZ = 7;

 static final int REG_QWORD = 11;

 /***/

 public static native String regGetValueSTR (int hkey, String pathKey, String nameValue

,boolean isExpandVal);

 public static native byte[] regGetValueBIN (int hkey, String pathKey, String nameValue);

 public static native int regGetValueDWORD (int hkey, String pathKey, String nameValue);

 public static native long regGetValueQWORD (int hkey, String pathKey, String nameValue);

 public static native String[] regGetValueMULTI (int hkey, String pathKey, String nameValue);

 public static native boolean regSetValueSTR (int hkey, String pathKey, String nameValue, String val

,boolean isTypeExpand);

 public static native boolean regSetValueBIN (int hkey, String pathKey, String nameValue, byte[] val);

 public static native boolean regSetValueDWORD (int hkey, String pathKey, String nameValue, int val

,boolean isTypeBigEndian);

 public static native boolean regSetValueQWORD (int hkey, String pathKey, String nameValue

,long val);

 public static native boolean regSetValueMULTI (int hkey, String pathKey, String nameValue

,String[] val);

 public static native int regGetTypeValue (int hkey, String pathKey, String nameValue);

 public static native boolean regCreateKey (int hkey, String pathKey);

 public static native boolean regDeleteKey (int hkey, String pathKey);

 public static native boolean regDeleteValue (int hkey, String pathKey, String nameValue);

 public static native String[] regEnumKeys (int hkey, String pathKey);

 public static native String[] regEnumValues (int hkey, String pathKey);

}

 ScreenSaverManagement

interface JavaExe_I_ScreenSaverManagement

{
 public static boolean scrsvIsCreate ();

 public static boolean scrsvIsDelete ();

 public static String[] scrsvGetInfo ();

61

 public static void scrsvInit ();

 public static void scrsvFinish ();

 public static void scrsvOpenConfig ();

 public static void scrsvPaint (Graphics2D g, int wScr, int hScr);

 public static boolean scrsvIsExitByKey (int keycode, boolean isUp);

 public static boolean scrsvIsExitByMouse (int x, int y, int nbClick, int button, boolean isUp);

}

 SectionManagement

interface JavaExe_I_SectionManagement

{
 public static native boolean sectionIsAdmin ();

 public static native boolean sectionExecAsAdmin (String pathname, String[] mainArgs);

 public static native void sectionRestartAsAdmin (Serializable data, String[] mainArgs);

 public static native void sectionSetIconAdmin (Component comp);

 public static native boolean sectionStartAdminThread (int numID, Serializable data, boolean isWait);

 public static void sectionSetDataRestart (Serializable data);

 public static void sectionMainAdmin (int numID, Serializable data);

 public static void sectionClosedAdminThread (int numID);

 public static boolean sectionIsDataForAdmin (int numID);

 public static Serializable sectionDataForAdmin (int numID);

 public static void sectionDataFromAdmin (int numID, Serializable data);

 public static boolean sectionIsDataForUser ();

 public static Serializable sectionDataForUser ();

 public static void sectionDataFromUser (Serializable data);

}

 ServiceControlManagement

interface JavaExe_I_ServiceControlManagement

{
 //--- Service Type

 static final int SERVICE_KERNEL_DRIVER = 0x00000001;

 static final int SERVICE_FILE_SYSTEM_DRIVER = 0x00000002;

 static final int SERVICE_ADAPTER = 0x00000004;

 static final int SERVICE_RECOGNIZER_DRIVER = 0x00000008;

 static final int SERVICE_WIN32_OWN_PROCESS = 0x00000010;

 static final int SERVICE_WIN32_SHARE_PROCESS = 0x00000020;

 static final int SERVICE_INTERACTIVE_PROCESS = 0x00000100;

 static final int SERVICE_WIN32 = (SERVICE_WIN32_OWN_PROCESS

| SERVICE_WIN32_SHARE_PROCESS);

 static final int SERVICE_DRIVER = (SERVICE_KERNEL_DRIVER

| SERVICE_FILE_SYSTEM_DRIVER | SERVICE_RECOGNIZER_DRIVER);

 static final int SERVICE_TYPE_ALL = (SERVICE_WIN32 | SERVICE_ADAPTER

| SERVICE_DRIVER | SERVICE_INTERACTIVE_PROCESS);

 //--- Start Type

 static final int SERVICE_BOOT_START = 0x00000000;

62

 static final int SERVICE_SYSTEM_START = 0x00000001;

 static final int SERVICE_AUTO_START = 0x00000002;

 static final int SERVICE_DEMAND_START = 0x00000003;

 static final int SERVICE_DISABLED = 0x00000004;

 //--- Current Status

 static final int SERVICE_STOPPED = 0x00000001;

 static final int SERVICE_START_PENDING = 0x00000002;

 static final int SERVICE_STOP_PENDING = 0x00000003;

 static final int SERVICE_RUNNING = 0x00000004;

 static final int SERVICE_CONTINUE_PENDING = 0x00000005;

 static final int SERVICE_PAUSE_PENDING = 0x00000006;

 static final int SERVICE_PAUSED = 0x00000007;

 //--- Service State

 static final int SERVICE_ACTIVE = 0x00000001;

 static final int SERVICE_INACTIVE = 0x00000002;

 static final int SERVICE_STATE_ALL = (SERVICE_ACTIVE | SERVICE_INACTIVE);

 //--- Controls Code

 static final int SERVICE_ACCEPT_STOP = 0x00000001;

 static final int SERVICE_ACCEPT_PAUSE_CONTINUE = 0x00000002;

 static final int SERVICE_ACCEPT_SHUTDOWN = 0x00000004;

 static final int SERVICE_ACCEPT_PARAMCHANGE = 0x00000008;

 static final int SERVICE_ACCEPT_NETBINDCHANGE = 0x00000010;

 static final int SERVICE_ACCEPT_HARDWAREPROFILECHANGE = 0x00000020;

 static final int SERVICE_ACCEPT_POWEREVENT = 0x00000040;

 static final int SERVICE_ACCEPT_SESSIONCHANGE = 0x00000080;

 static final int SERVICE_ACCEPT_PRESHUTDOWN = 0x00000100;

 //--- Error Code

 static final int ERROR_SUCCESS = 0;

 static final int ERROR_PATH_NOT_FOUND = 3;

 static final int ERROR_ACCESS_DENIED = 5;

 static final int ERROR_INVALID_NAME = 123;

 static final int ERROR_DEPENDENT_SERVICES_RUNNING = 1051;

 static final int ERROR_INVALID_SERVICE_CONTROL = 1052;

 static final int ERROR_SERVICE_REQUEST_TIMEOUT = 1053;

 static final int ERROR_SERVICE_NO_THREAD = 1054;

 static final int ERROR_SERVICE_DATABASE_LOCKED = 1055;

 static final int ERROR_SERVICE_ALREADY_RUNNING = 1056;

 static final int ERROR_INVALID_SERVICE_ACCOUNT = 1057;

 static final int ERROR_SERVICE_DISABLED = 1058;

 static final int ERROR_CIRCULAR_DEPENDENCY = 1059;

 static final int ERROR_SERVICE_DOES_NOT_EXIST = 1060;

 static final int ERROR_SERVICE_CANNOT_ACCEPT_CTRL = 1061;

 static final int ERROR_SERVICE_NOT_ACTIVE = 1062;

 static final int ERROR_SERVICE_DEPENDENCY_FAIL = 1068;

 static final int ERROR_SERVICE_LOGON_FAILED = 1069;

 static final int ERROR_SERVICE_MARKED_FOR_DELETE = 1072;

 static final int ERROR_SERVICE_EXISTS = 1073;

 static final int ERROR_SERVICE_DEPENDENCY_DELETED = 1075;

 static final int ERROR_DUPLICATE_SERVICE_NAME = 1078;

 static final int ERROR_SHUTDOWN_IN_PROGRESS = 1115;

 //--- Change Config

 static final int SERVICE_NO_CHANGE = -1;

 //--- Result QueryConfig

 static final int NDX_CONFIG_NAMELONG = 0;

 static final int NDX_CONFIG_PATHNAME = 1;

 static final int NDX_CONFIG_DEPENDS = 2;

 static final int NDX_CONFIG_LOGIN = 3;

 static final int NDX_CONFIG_TYPE = 4;

 static final int NDX_CONFIG_START = 5;

63

 //--- Result QueryStatus

 static final int NDX_STATUS_CURRENT = 0;

 static final int NDX_STATUS_TYPE = 1;

 static final int NDX_STATUS_CNTRL = 2;

 static final int NDX_STATUS_PRCSSID = 3;

 //--- Result Enum Services

 static final int NDX_ENUM_NAMESVC = 0;

 static final int NDX_ENUM_NAMELONG = 1;

 static final int NDX_ENUM_STATUS = 2;

 static final int NDX_ENUM_TYPE = 3;

 static final int NDX_ENUM_CNTRL = 4;

 static final int NDX_ENUM_START = 5;

 static final int NDX_ENUM_DELAYED = 6;

 static final int NDX_ENUM_DESCR = 7;

 /***/

 public static native int scmCreateService (String nameSvc, String nameLong, String descr, String pathnameExe

,boolean isAuto, boolean isDelayed);

 public static native int scmDeleteService (String nameSvc);

 public static native int scmStartService (String nameSvc);

 public static native int scmStopService (String nameSvc);

 public static native int scmPauseService (String nameSvc);

 public static native int scmContinueService (String nameSvc);

 public static native int scmChangeConfig (String nameSvc, String nameLong, int serviceType, int startType

,String pathnameExe, String dependencies, String login, String passwd);

 public static native int scmSetDescription (String nameSvc, String descr);

 public static native int scmSetFailures (String nameSvc, String actions, String delays, String exeFailure

,String msgBoot, int resetTime);

 public static native int scmSetDelayedAutoStart (String nameSvc, boolean isDelayed);

 public static native String[][] scmEnumServices (int serviceType, int serviceState, boolean isFullInfo);

 public static native String[][] scmEnumDependentServices (String nameSvc, int serviceState

,boolean isFullInfo);

 public static native String[] scmQueryConfig (String nameSvc);

 public static native String[] scmQueryStatus (String nameSvc);

 public static native String[] scmGetFailures (String nameSvc);

 public static native String scmGetDescription (String nameSvc);

 public static native String scmGetNameLong (String nameSvc);

 public static native String scmGetNameSvc (String nameLong);

 public static native boolean scmIsDelayedAutoStart (String nameSvc);

 public static native String scmGetErrorMessage (int numErr);

}

ServiceManagement

interface JavaExe_I_ServiceManagement

{
 public static boolean serviceIsCreate ();

 public static boolean serviceIsLaunch ();

 public static boolean serviceIsDelete ();

 public static boolean serviceControl_Pause ();

 public static boolean serviceControl_Continue ();

 public static boolean serviceControl_Stop ();

 public static boolean serviceControl_Shutdown ();

 public static String[] serviceGetInfo ();

64

 public static boolean serviceInit ();

 public static void serviceFinish ();

 public static void serviceDataFromUI (Serializable data);

 public static boolean serviceIsDataForUI ();

 public static Serializable serviceDataForUI ();

}

 SplashScreenManagement

interface JavaExe_I_SplashScreenManagement

{
 public static void sphInit ();

 public static void sphFinish ();

 public static boolean sphIsClose ();

 public static int sphGetTickCount ();

 public static String[] sphGetProgressBarInfo ();

 public static int sphGetProgressBarValue ();

 public static void sphPaint (Graphics2D g, int wWnd, int hWnd);

}

SystemEventManagement

interface JavaExe_I_SystemEventManagement

{
 static final int WM_QUERYENDSESSION = 0x0011;

 static final int WM_ENDSESSION = 0x0016;

 static final int WM_DEVMODECHANGE = 0x001B;

 static final int WM_TIMECHANGE = 0x001E;

 static final int WM_COMPACTING = 0x0041;

 static final int WM_USERCHANGED = 0x0054;

 static final int WM_DISPLAYCHANGE = 0x007E;

 static final int WM_SYSCOMMAND = 0x0112;

 static final int WM_POWERBROADCAST = 0x0218;

 static final int WM_DEVICECHANGE = 0x0219;

 static final int WM_SESSION_CHANGE = 0x02B1;

 static final int WM_NETWORK = 0x0401;

 static final int WM_CONSOLE = 0x0402;

 static final int PBT_APMQUERYSUSPEND = 0x0000;

 static final int PBT_APMQUERYSUSPENDFAILED = 0x0002;

 static final int PBT_APMSUSPEND = 0x0004;

 static final int PBT_APMRESUMECRITICAL = 0x0006;

 static final int PBT_APMRESUMESUSPEND = 0x0007;

 static final int PBT_APMBATTERYLOW = 0x0009;

 static final int PBT_APMPOWERSTATUSCHANGE = 0x000A;

 static final int PBT_APMOEMEVENT = 0x000B;

 static final int PBT_APMRESUMEAUTOMATIC = 0x0012;

 static final int DBT_QUERYCHANGECONFIG = 0x0017;

 static final int DBT_CONFIGCHANGED = 0x0018;

 static final int DBT_CONFIGCHANGECANCELED = 0x0019;

 static final int DBT_DEVICEARRIVAL = 0x8000;

65

 static final int DBT_DEVICEQUERYREMOVE = 0x8001;

 static final int DBT_DEVICEQUERYREMOVEFAILED = 0x8002;

 static final int DBT_DEVICEREMOVECOMPLETE = 0x8004;

 static final int DBT_DEVICEREMOVEPENDING = 0x8003;

 static final int DBT_DEVICETYPESPECIFIC = 0x8005;

 static final int DBT_CUSTOMEVENT = 0x8006;

 static final int DBT_USERDEFINED = 0xFFFF;

 static final int DBT_DEVTYP_OEM = 0x00000000;

 static final int DBT_DEVTYP_VOLUME = 0x00000002;

 static final int DBT_DEVTYP_PORT = 0x00000003;

 static final int ENDSESSION_LOGOFF = 0x80000000;

 static final int SC_SCREENSAVE = 0xF140;

 static final int SC_MONITORPOWER = 0xF170;

 static final int NET_DISCONNECT = 0;

 static final int NET_CONNECTING = 1;

 static final int NET_CONNECTED = 2;

 static final int MIB_IF_TYPE_OTHER = 1;

 static final int MIB_IF_TYPE_ETHERNET = 6;

 static final int MIB_IF_TYPE_TOKENRING = 9;

 static final int MIB_IF_TYPE_FDDI = 15;

 static final int MIB_IF_TYPE_PPP = 23;

 static final int MIB_IF_TYPE_LOOPBACK = 24;

 static final int MIB_IF_TYPE_SLIP = 28;

 static final int WTS_SESSION_LOGGED = 0;

 static final int WTS_CONSOLE_CONNECT = 1;

 static final int WTS_CONSOLE_DISCONNECT = 2;

 static final int WTS_REMOTE_CONNECT = 3;

 static final int WTS_REMOTE_DISCONNECT = 4;

 static final int WTS_SESSION_LOGON = 5;

 static final int WTS_SESSION_LOGOFF = 6;

 static final int WTS_SESSION_LOCK = 7;

 static final int WTS_SESSION_UNLOCK = 8;

 static final int WTS_SESSION_REMOTE_CONTROL = 9;

 static final int CTRL_C_EVENT = 0;

 static final int CTRL_BREAK_EVENT = 1;

 static final int CTRL_CLOSE_EVENT = 2;

 static final int CTRL_LOGOFF_EVENT = 5;

 static final int CTRL_SHUTDOWN_EVENT = 6;

 /***/

 public static int notifyEvent (int msg, int val1, int val2, String val3, int[] arr1, byte[] arr2);

}

 SystemManagement

interface JavaExe_I_SystemManagement

{
 //--- Error Code

 static final int ERROR_SUCCESS = 0;

 static final int ERROR_ACCESS_DENIED = 5;

 static final int ERROR_NOT_SUPPORTED = 50;

 static final int ERROR_FAIL_SHUTDOWN = 351;

 static final int ERROR_SYSTEM_SHUTDOWN = 641;

 static final int ERROR_SHUTDOWN_IN_PROGRESS = 1115;

66

 static final int ERROR_NO_SHUTDOWN_IN_PROGRESS = 1116;

 static final int ERROR_SHUTDOWN_IS_SCHEDULED = 1190;

 static final int ERROR_SHUTDOWN_USERS_LOGGED_ON = 1191;

 static final int ERROR_SERVER_SHUTDOWN_IN_PROGRESS = 1255;

 /***/

 public static native int systemShutdown (String msg, int timeOut, boolean isReboot, boolean isForce

,boolean isPlanned);

 public static native int systemAbortShutdown ();

 public static native int systemOpenDialogShutdown (boolean isReboot, boolean isForce);

 public static native int systemStandby (boolean isHibernate, boolean isDisableWake);

 public static native int systemLock ();

 public static native int systemUserLogoff (boolean isForce);

 public static native int systemOpenDialogLogoff (boolean isForce);

 public static native int systemSetRequiredState (boolean isNoScreenSaver, boolean isNoDisplayOff

,boolean isNoStandby);

 public static native int systemBlockShutdown (String reason);

 public static native int systemUnblockShutdown ();

 public static native boolean systemIsLocked ();

 public static native boolean systemIsShutdownAllowed ();

 public static native boolean systemIsHibernateAllowed ();

 public static native boolean systemIsStandbyAllowed ();

 public static native String systemGetErrorMessage (int numErr);

}

TaskbarManagement

interface JavaExe_I_TaskbarManagement

{
 static final int ACT_CLICK_NOP = 0;

 static final int ACT_CLICK_OPEN = 1;

 static final int ACT_CLICK_MENU = 2;

 static final int NIIF_NONE = 0;

 static final int NIIF_INFO = 1;

 static final int NIIF_WARNING = 2;

 static final int NIIF_ERROR = 3;

 static final int NIIF_USER = 4;

 static final int MFT_MENUBARBREAK = 0x0020;

 static final int MFT_MENUBREAK = 0x0040;

 static final int MFT_RADIOCHECK = 0x0200;

 static final int MFT_SEPARATOR = 0x0800;

 static final int MFT_RIGHTORDER = 0x2000;

 static final int MFS_DISABLED = 0x00000003;

 static final int MFS_CHECKED = 0x00000008;

 static final int MFS_HILITE = 0x00000080;

 static final int MFS_ADMIN = 0x10000000;

 /***/

 public static String[][] taskGetMenu (boolean isRightClick, int menuID);

 public static int taskGetDefaultMenuID (boolean isRightClick);

 public static void taskDoAction (boolean isRightClick, int menuID);

 public static boolean taskDisplayMenu (boolean isRightClick, Component parent, int x, int y);

67

 public static String[] taskGetInfo ();

 public static boolean taskIsShow ();

 public static void taskInit (boolean isServiceUI);

public static void taskDoBalloonAction ();

 public static boolean taskIsBalloonShow ();

 public static void taskSetBalloonSupported (boolean isSupported);

 public static String[] taskGetBalloonInfo ();

 public static void taskDataFromService (Serializable data);

 public static boolean taskIsDataForService ();

 public static Serializable taskDataForService ();

 public static void taskErrorNoService ();

}

69

Examples

These examples are there only to show in practice the various functionalities of JavaExe. Their source code

can be used as starting point for more complex applications.

1 - Application

This example shows simply a Java application which opens a dialog box. It introduces the notion of the .EXE

to launch a Java application with a splash screen.

2 - Control Panel

This example define a control panel Windows containing a dialog box has 3 tabs, where their values will be

read since the properties file associated to the application (Example2.properties). While pressing on the button

“Apply” or “Ok” the values will be saved in this same file.

There are 2 ways to launch this control panel. Either in double clicking on the .EXE (in admin mode) for

install / uninstall the control panel, or in double clicking on the .CPL to open it directly.

The control panel will be installed in two categories: "Appearance and Personalization" and "Security".

3 - Service

This example define a service without Desktop interaction. At the time of its installation (in admin mode), a

dialog box proposes various parameters for the launching of the service, like the number of port. This service standby

of connection on the port thus defined and return the date to the client who connected.

4 - TrayIcon

This example shows a Java application using the taskbar management. The icon on the taskbar has 2 menus,

for the right click and for the left click of the mouse. In double clicking on the icon, the application opens a dialog

box in which a checkbox is to display or not the icon in the taskbar.

70

5 - Service & TrayIcon

This example define a service with Desktop interaction. This service is the same one as for example 3. The

interaction with the Desktop occurs by the taskbar whose icon will have a menu on the right click of the mouse. Since

this menu it will be possible to reconfigure the service or launching a browser on the port of listening service.

6 - System Event

This example, which launches like a simple application, intercepts the events systems of Windows and

display them in a dialog box. If the application is launched in console Dos, with Example6_console.exe, the CTRL-C

of the console will be also intercepted and a dialog box will open to require the confirmation of it.

7 - OneInstance

This example shows the functionality of the “OneInstance” making it possible to control the number of

instances of the application launched at the same time. When the application launches, a dialog box opens containing

a checkbox. When this one is checked several instances of the application will be able to be executed at the same

time.

If the application is launched with arguments, those will be displayed initially in dialog box of the 1st

instance, then according to whether the checkbox is checked or not these same arguments are displayed in dialog box

of the application newly launched.

8 - Service & TrayIcon & System Event

This example creates a Windows service with Desktop interaction intercepting the events systems. It thus

manages the taskbar whose icon has a menu on the right click of the mouse. From this menu it is possible to open a

dialog box displaying the events received by the service or to hide the messages related to this icon.

9 - Registry

This example put into practice the management of Windows registry. In the window that opens, a tree

structure is built from the HKEY_CURRENT_USER. It will be possible to create keys or values (only type

REG_SZ), automatically prefixed with "JavaExe -", or remove only those that have this same prefix (to avoid

mishandling of the Registry).

71

10 - Test Unicode

This example verifies that JavaExe handles Unicode, whether in the arguments received by the application,

or in the Windows Registry, or in the Java system properties, or in the filename. EXE or . JAR.

11 - Restore Session

This example illustrates the restoring of the Java application after a system restart. When the application

opens, just type some text and to reboot Windows without exiting the Java application. After rebooting the system,

the application will automatically be restarted with the text that has been entered before the restart.

12 - Run as Admin 1

The executable of this example contains a manifest forcing Windows to run automatically in administrator

mode. The manifest was added to .exe with UpdateRsrcJavaExe.

In this example, the button will also launch CMD.EXE in admin mode.

13 - Run as Admin 2

This example runs in normal mode (that is to say in the context of the current user) and contains two buttons

each with an icon (or depending on the version of Windows) symbolizing the elevation request in

administrator mode. The first button "Restart App" restarts the same example in admin mode if the elevation request

has been confirmed. The second button "Execute CMD.EXE" launchs a DOS window (CMD.EXE) in admin mode

if the elevation is confirmed.

14 - Thread as Admin 1

This example shows the AdminThread functionality to execute only a part of the Java application in admin

mode, while the rest is still in standard mode.

In this example, there is a "Run Thread" button to start a new thread in admin mode (after confirmation of

the elevation request), and a "File" menu which it is possible to run an action in Admin mode or standard mode.

15 - Thread as Admin 2

This example shows the AdminThread functionality to execute only a part of the Java application in admin

mode, and the communication with these AdminThread.

72

In this example, there is a "New Thread" button to start a new thread in admin mode (after confirmation of

the elevation request). When at least one AdminThread is active, it is possible to send a text and vice versa.

16 - Dynamic SplashScreen 1

This example shows the dynamic splash screen functionality, in which the static splash screen is updated with

an initialization text that increments for 5 seconds.

17 - Dynamic SplashScreen 2

This example shows the dynamic splash screen functionality, in which the static splash screen is updated with

a progress bar for 5 seconds.

18 - Dynamic SplashScreen 3

This example combines the previous two: the static screen is updated with a text showing the initialization

step and a progress bar.

19 - ScreenSaver

This example illustrates the screen saver feature. Right-click on the file "ScreenSaver.scr" can either test it,

or open its configuration screen, or install it.

It is also possible to install it directly from the .exe, but in administrator mode, or uninstall it if already

installed.

To stop this screensaver, simply press ESC key or double-click the right mouse button.

20 - SystemManagement

This example provides access to all the features controlling the stop (or restart) the PC, its standby or

hibernate, disconnect the current user, locking the station, or prevents trigger a screensaver, or the monitor off, or

automatic standby (that is to say, not requested by the user).

73

21 – ServiceControlManagement

This example put into practice the features of the Service Control Management, that is to say the ability to

manage Windows services. It shows the various application services and / or those of the system kernel, and details

of their current status and configuration.

By clicking on the button "Change ..." it is possible to change the startup type, or stop the service, pause it ...

But these changes will be allowed if this example has been launched in administrator mode.

22 - ServiceControlManagement & Admin

Same example as above, but this time by clicking on the button "Change ..." prompting for elevation to

administrator mode to be authorized to make these changes.

23 - Service & TrayIcon & System Event & SCM & Admin

This example is the same as Example 8, except that it is now possible, from menu of the icon, stop the service

or restart with elevation request in admin mode, if the part IU of the service had not been launched in admin mode (in

which case it will be also possible to restart the UI part in admin mode).

74

 JavaExe and UpdateRsrcJavaExe are creations and copyrighted of DevWizard
(DevWizard@free.fr).

You are free to be useful to you about it and to provide them with your applications which
you wish to distribute, who they are freeware, shareware or commercial. Only DevWizard
is authorized to make an unspecified modification to JavaExe and
UpdateRsrcJavaExe.

Any request for modification can be made by mail to DevWizard@free.fr

© 2002-2013 by DevWizard

mailto:DevWizard@free.fr
mailto:DevWizard@free.fr

